cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190352 The continued fraction expansion of tanh(Pi) requires the computation of the pairs (p_n, q_n); sequence gives values of q_n.

Original entry on oeis.org

1, 1, 268, 1073, 15290, 16363, 48016, 64379, 176774, 417927, 594701, 1607329, 5416688, 44940833, 140239187, 185180020, 1066139287, 4449737168, 5515876455, 81672007538, 822235951835, 903907959373, 18900395139295, 719118923252583, 738019318391878
Offset: 0

Views

Author

N. J. A. Sloane, May 09 2011

Keywords

Comments

a(2) = 268 explains the comment in A021085 that "The decimal expansion of Sum_{n>=1} floor(n * tanh(Pi))/10^n is the same as that of 1/81 for the first 268 decimal places [Borwein et al.]".

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 13.

Crossrefs

Programs

  • Maple
    lim:=50: with(numtheory): cfr := cfrac(tanh(Pi),lim+10,'quotients'): q[0]:=1:q[1]:=cfr[2]: printf("%d, %d, ", q[0], q[1]): for n from 2 to lim do q[n]:=cfr[n+1]*q[n-1]+q[n-2]: printf("%d, ",q[n]): od: # Nathaniel Johnston, May 10 2011
  • Mathematica
    a[0] := 1; a[1] := 1; A060402:= ContinuedFraction[Tanh[Pi], 100];
    a[n_]:= a[n] = A060402[[n + 1]]*a[n - 1] + a[n - 2]; Join[{1, 1}, Table[a[n], {n, 2, 75}]] (* G. C. Greubel, Apr 05 2018 *)

Formula

a(n) = A060402(n)*a(n-1) + a(n-2) for n >= 2. - Nathaniel Johnston, May 10 2011

Extensions

a(4)-a(24) from Nathaniel Johnston, May 10 2011