cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190377 Numbers with prime factorization p^2*q^2*r^2*s^2 where p, q, r, and s are distinct primes.

Original entry on oeis.org

44100, 108900, 152100, 213444, 260100, 298116, 324900, 476100, 509796, 592900, 636804, 736164, 756900, 828100, 864900, 933156, 1232100, 1258884, 1334025, 1416100, 1483524, 1512900, 1572516, 1664100, 1695204, 1758276, 1768900, 1863225
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,2,2,2};Select[Range[3000000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2,t3); forprime(p=2,sqrtint(lim\900), t1=p^2; forprime(q=2,sqrtint(lim\(36*t1)), if(q==p, next); t2=q^2*t1; forprime(r=2,sqrtint(lim\(4*t2)), if(r==p || r==q, next); t3=r^2*t2; forprime(s=2,sqrtint(lim\t3), if(s==p || s==q || s==r, next); listput(v, t3*s^2))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A190377(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(primepi(x//(k*m*r))-c for a,k in enumerate(primerange(integer_nthroot(x,4)[0]+1),1) for b,m in enumerate(primerange(k+1,integer_nthroot(x//k,3)[0]+1),a+1) for c,r in enumerate(primerange(m+1,isqrt(x//(k*m))+1),b+1)))
        return bisection(f,n,n)**2 # Chai Wah Wu, Mar 27 2025

Formula

Sum_{n>=1} 1/a(n) = (P(2)^4 - 6*P(2)^2*P(4) + 8*P(2)*P(6) + 3*P(4)^2 - 6*P(8))/24 = 0.00010511750849230980748..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024
a(n) = A046386(n)^2. - Chai Wah Wu, Mar 27 2025