cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A190396 Number of ways to place 4 nonattacking grasshoppers on a chessboard of size n x n.

Original entry on oeis.org

0, 1, 78, 1278, 10002, 50191, 189208, 584958, 1563488, 3737987, 8181786, 16669638, 32003238, 58438623, 102234772, 172344406, 281269668, 446107043, 689807558, 1042679982, 1544166426, 2244921423, 3209227248, 4517779918
Offset: 1

Views

Author

Vaclav Kotesovec, May 10 2011

Keywords

Comments

The Grasshopper moves on the same lines as a queen, but must jump over a hurdle to land on the square immediately beyond.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- x (2 x^9 - 22 x^8 + 50 x^7 + 78 x^6 - 89 x^5 - 245 x^4 + 1224 x^3 + 612 x^2 + 69 x + 1) / (x - 1)^9, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 02 2013 *)

Formula

a(n) = 1/24*(n^8 -6*n^6 -80*n^5 +431*n^4 -552*n^3 -666*n^2 +2168*n -1392), n>2.
G.f.: -x^2*(2*x^9 -22*x^8 +50*x^7 +78*x^6 -89*x^5 -245*x^4 +1224*x^3 +612*x^2 +69*x +1)/(x-1)^9.

A190398 Number of ways to place 3 nonattacking grasshoppers on a toroidal chessboard of size n x n.

Original entry on oeis.org

0, 4, 72, 496, 2100, 6708, 17640, 40384, 83376, 158900, 284108, 482160, 783484, 1227156, 1862400, 2750208, 3965080, 5596884, 7752836, 10559600, 14165508, 18742900, 24490584, 31636416, 40440000, 51195508, 64234620, 79929584
Offset: 1

Views

Author

Vaclav Kotesovec, May 10 2011

Keywords

Comments

The Grasshopper moves on the same lines as a queen, but must jump over a hurdle to land on the square immediately beyond.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- 4 x (3 x^8 - 17 x^7 + 37 x^6 - 35 x^5 + 11 x^4 + 19 x^2 + 11 x + 1) / (x - 1)^7, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 02 2013 *)

Formula

a(n) = 1/6*n^2*(n^4 -3*n^2 -24*n +74), n>3.
G.f.: -4*x^2*(3*x^8 -17*x^7 +37*x^6 -35*x^5 +11*x^4 +19*x^2 +11*x +1)/(x-1)^7.

A190397 Number of ways to place 5 nonattacking grasshoppers on a chessboard of size n x n.

Original entry on oeis.org

0, 0, 28, 1668, 29092, 252584, 1441634, 6222996, 22004086, 66972760, 181332416, 446905476, 1019470032, 2179712872, 4410518630, 8510498516, 15756224370, 28128603736, 48622240660, 81660504068, 133643402268, 213660267432
Offset: 1

Views

Author

Vaclav Kotesovec, May 10 2011

Keywords

Comments

The Grasshopper moves on the same lines as a queen, but must jump over a hurdle to land on the square immediately beyond.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2 x^2 (8 x^12 - 60 x^11 + 75 x^10 + 24 x^9 + 441 x^8 - 1948 x^7 - 893 x^6 + 4122 x^5 - 8491 x^4 - 15988 x^3 - 6822 x^2 - 694 x - 14) / ((x - 1)^11 (x+1)), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 02 2013 *)

Formula

a(n) = 1/120*(n^10 -10*n^8 -200*n^7 +1175*n^6 -1136*n^5 -740*n^4 -30520*n^3 +159624*n^2 -289024*n +179175 -135*(-1)^n), n>3.
G.f.: 2x^3*(8*x^12 -60*x^11 +75*x^10 +24*x^9 +441*x^8 -1948*x^7 -893*x^6 +4122*x^5 -8491*x^4 -15988*x^3 -6822*x^2 -694*x -14)/((x-1)^11*(x+1)).

A190579 Number of ways to place 6 nonattacking grasshoppers on an n x n chessboard.

Original entry on oeis.org

0, 0, 2, 998, 51618, 873852, 8039322, 50272978, 240764814, 947860554, 3210392210, 9649651136, 26316155354, 66191981440, 155482089002, 344411086374, 725043524246, 1459722296638, 2825136685698, 5278863810724, 9557560367842
Offset: 1

Views

Author

Vaclav Kotesovec, May 13 2011

Keywords

Comments

The Grasshopper moves on the same lines as a queen, but must jump over a hurdle to land on the square immediately beyond.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2 x^2 (8 x^18 - 59 x^17 + 110 x^16 + 71 x^15 + 473 x^14 - 3017 x^13 - 5401 x^12 + 23838 x^11 - 2727 x^10 - 119474 x^9 - 45545 x^8 - 20157 x^7 - 571677 x^6 - 1006961 x^5 - 689547 x^4 - 199704 x^3 - 20861 x^2 - 489 x - 1) / ((x - 1)^13 (x + 1)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 03 2013 *)

Formula

a(n) = n^12/720 -n^10/48 -5n^9/9 +509n^8/144 -187n^7/90 +701n^6/48 -14467n^5/36 +666917n^4/360 -471121n^3/180 -59875n^2/24 +57101n/6 -11339/2 -(9n^2/8-n-7/2)*(-1)^n, n>5.
G.f.: 2x^3*(8x^18 -59x^17 +110x^16 +71x^15 +473x^14 -3017x^13 -5401x^12 +23838x^11 -2727x^10 -119474x^9 -45545x^8 -20157x^7 -571677x^6 -1006961x^5 -689547x^4 -199704x^3 -20861x^2 -489x -1)/((x-1)^13*(x+1)^3).
Showing 1-4 of 4 results.