A190406 Decimal expansion of Sum_{k>=1} (1/2)^S(k-1), where S=A001844 (centered square numbers).
5, 3, 1, 3, 7, 2, 1, 0, 0, 1, 1, 5, 2, 7, 7, 1, 3, 5, 4, 7, 9, 8, 7, 9, 8, 5, 8, 9, 6, 2, 5, 5, 3, 5, 3, 1, 7, 1, 2, 8, 4, 3, 2, 0, 1, 8, 6, 2, 0, 6, 6, 3, 9, 4, 0, 7, 8, 8, 8, 7, 1, 6, 1, 3, 5, 7, 8, 9, 0, 6, 8, 8, 0, 2, 3, 7, 7, 6, 0, 4, 7, 6, 0, 7, 3, 0, 3, 4, 5, 7, 7, 9, 6, 0, 7, 1, 2, 3, 4, 9, 2, 0, 6, 1, 0, 7, 1, 1, 5, 2, 2, 0, 6, 3, 9, 0, 0, 7, 3, 5
Offset: 0
Links
- Danny Rorabaugh, Table of n, a(n) for n = 0..10000
Programs
-
Maple
evalf(JacobiTheta2(0,1/4)/2^(3/2)) ; # R. J. Mathar, Jul 15 2013
-
Mathematica
(See A190404.) (* or *) RealDigits[EllipticTheta[2, 0, 1/4]/(2*Sqrt[2]), 10, 120] // First (* Jean-François Alcover, Feb 12 2013 *)
-
PARI
th2(x)=x^.25 + 2*suminf(n=1,x^(n+1/2)^2) th2(1/4)/sqrt(8) \\ Charles R Greathouse IV, Jun 06 2016
-
Sage
def A190406(b): # Generate the constant with b bits of precision return N(sum([(1/2)^(2*j*(j+1)+1) for j in range(0,b)]),b) A190406(409) # Danny Rorabaugh, Mar 26 2015
Formula
a(n) = floor(10^(n+1)*Sum_{j>=0} (1/2)^(2*j*(j+1)+1)) mod 10. - Danny Rorabaugh, Mar 26 2015
Comments