cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190406 Decimal expansion of Sum_{k>=1} (1/2)^S(k-1), where S=A001844 (centered square numbers).

Original entry on oeis.org

5, 3, 1, 3, 7, 2, 1, 0, 0, 1, 1, 5, 2, 7, 7, 1, 3, 5, 4, 7, 9, 8, 7, 9, 8, 5, 8, 9, 6, 2, 5, 5, 3, 5, 3, 1, 7, 1, 2, 8, 4, 3, 2, 0, 1, 8, 6, 2, 0, 6, 6, 3, 9, 4, 0, 7, 8, 8, 8, 7, 1, 6, 1, 3, 5, 7, 8, 9, 0, 6, 8, 8, 0, 2, 3, 7, 7, 6, 0, 4, 7, 6, 0, 7, 3, 0, 3, 4, 5, 7, 7, 9, 6, 0, 7, 1, 2, 3, 4, 9, 2, 0, 6, 1, 0, 7, 1, 1, 5, 2, 2, 0, 6, 3, 9, 0, 0, 7, 3, 5
Offset: 0

Views

Author

Clark Kimberling, May 10 2011

Keywords

Comments

See A190404.

Crossrefs

Programs

  • Maple
    evalf(JacobiTheta2(0,1/4)/2^(3/2)) ; # R. J. Mathar, Jul 15 2013
  • Mathematica
    (See A190404.)
    (* or *) RealDigits[EllipticTheta[2, 0, 1/4]/(2*Sqrt[2]), 10, 120] // First (* Jean-François Alcover, Feb 12 2013 *)
  • PARI
    th2(x)=x^.25 + 2*suminf(n=1,x^(n+1/2)^2)
    th2(1/4)/sqrt(8) \\ Charles R Greathouse IV, Jun 06 2016
  • Sage
    def A190406(b): # Generate the constant with b bits of precision
        return N(sum([(1/2)^(2*j*(j+1)+1) for j in range(0,b)]),b)
    A190406(409) # Danny Rorabaugh, Mar 26 2015
    

Formula

a(n) = floor(10^(n+1)*Sum_{j>=0} (1/2)^(2*j*(j+1)+1)) mod 10. - Danny Rorabaugh, Mar 26 2015