A190408 Decimal expansion of sum of odd-numbered rows of array G defined at A190404.
8, 3, 8, 5, 5, 1, 8, 4, 0, 4, 3, 4, 4, 8, 1, 2, 4, 0, 0, 6, 1, 6, 3, 2, 3, 3, 1, 3, 5, 5, 8, 0, 0, 1, 4, 4, 8, 7, 3, 7, 5, 6, 9, 0, 4, 6, 6, 5, 1, 7, 4, 8, 1, 8, 6, 4, 6, 1, 7, 9, 5, 0, 0, 9, 1, 2, 3, 6, 8, 4, 3, 2, 7, 4, 2, 6, 4, 2, 5, 2, 2, 5, 3, 4, 5, 5, 8, 0, 4, 4, 9, 3, 0, 0, 2, 8, 6, 4, 6, 2, 9, 4, 5, 5, 9, 5, 9, 1, 6, 8, 0, 0, 8, 0, 4, 4, 2, 3, 6, 0
Offset: 0
Examples
0.8385518404344812400616323313558001448737569046651...
Links
- Danny Rorabaugh, Table of n, a(n) for n = 0..500
Programs
-
Mathematica
f[i_, j_] := i + (j + i - 2)(j + i - 1)/2; (* natural number array, A000027 *) g[i_, j_] := (1/2)^f[i, j]; (* array G *) r[i_] := Sum[g[i,j], {j,1,400}]; (* i-th row sum of G *) c1 = N[Sum[r[2 i - 1], {i, 1, 10}], 60] RealDigits[c1, 10, 60, -1] (* A190408 *) c2 = N[Sum[r[2 i], {i, 1, 10}], 60] RealDigits[c2, 10, 60, -1] (* A190409 *) c1 + c2 (* very close to 1 *)
-
Sage
def A190408(b): # Generate the constant with b bits of precision return N(sum([sum([(1/2)^(i+(j+i-2)*(j+i-1)/2) for j in range(1,b)]) for i in range(1,b,2)]),b) A190408(405) # Danny Rorabaugh, Mar 26 2015
Extensions
a(69)-a(119) corrected by Danny Rorabaugh, Mar 26 2015
Comments