A190409 Decimal expansion of sum of even-numbered rows of array G defined at A190404.
1, 6, 1, 4, 4, 8, 1, 5, 9, 5, 6, 5, 5, 1, 8, 7, 5, 9, 9, 3, 8, 3, 6, 7, 6, 6, 8, 6, 4, 4, 1, 9, 9, 8, 5, 5, 1, 2, 6, 2, 4, 3, 0, 9, 5, 3, 3, 4, 8, 2, 5, 1, 8, 1, 3, 5, 3, 8, 2, 0, 4, 9, 9, 0, 8, 7, 6, 3, 1, 5, 6, 7, 2, 5, 7, 3, 5, 7, 4, 7, 7, 4, 6, 5, 4, 4, 1, 9, 5, 5, 0, 6, 9, 9, 7, 1, 3, 5, 3, 7, 0, 5, 4, 4
Offset: 0
Examples
0.161448159565518759938367668644199855126243095334825...
Links
- Danny Rorabaugh, Table of n, a(n) for n = 0..500
Programs
-
Mathematica
f[i_, j_] := i + (j + i - 2) (j + i - 1)/2; (* natural number array, A000027 *) g[i_,j_] := (1/2)^f[i, j]; (* array G *) r[i_] := Sum[g[i, j], {j,1,400}]; (* i-th row sum of G *) c1 = N[Sum[r[2 i - 1], {i, 1, 10}], 60] RealDigits[c1, 10, 60, -1] (* A190408 *) c2 = N[Sum[r[2 i], {i, 1, 10}], 60] RealDigits[c2, 10, 60, -1] (* A190409 *) c1 + c2 (* very close to 1 *)
-
Sage
def A190409(b): # Generate the constant with b bits of precision return N(sum([sum([(1/2)^(i+(j+i-2)*(j+i-1)/2) for j in range(1,b)]) for i in range(2,b,2)]),b) A190409(350) # Danny Rorabaugh, Mar 25 2015
Extensions
a(75)-a(103) corrected by Danny Rorabaugh, Mar 24 2015
Comments