A190410 Decimal expansion of sum of odd-numbered columns of array G defined at A190404.
7, 0, 8, 6, 5, 9, 0, 1, 3, 1, 1, 7, 2, 3, 6, 7, 1, 5, 3, 6, 9, 6, 4, 8, 5, 9, 2, 0, 5, 2, 6, 7, 6, 3, 3, 3, 2, 0, 1, 5, 9, 6, 9, 4, 1, 3, 2, 0, 4, 0, 5, 0, 9, 7, 2, 8, 8, 7, 0, 4, 3, 7, 3, 2, 1, 4, 3, 4, 6, 4, 3, 5, 1, 6, 8, 4, 7, 4, 7, 3, 5, 9, 9, 8, 8, 9, 6, 6, 7, 8, 9, 4, 4, 4, 2, 4, 3, 9, 8, 0, 6, 7, 4, 7
Offset: 0
Examples
0.708659013117236715369648592052676333201596941320...
Links
- Danny Rorabaugh, Table of n, a(n) for n = 0..500
Programs
-
Mathematica
f[i_, j_] := i + (j + i - 2) (j + i - 1)/2; (* natural number array, A000027 *) g[i_, j_] := (1/2)^f[i, j]; c[j_] := Sum[g[i,j], {i,1,400}]; (* j-th column sum of G *) c1 = N[Sum[c[2 i - 1], {i, 1, 10}], 60] RealDigits[c1, 10, 60, -1] (* A190410 *) c2 = N[Sum[c[2 i], {i, 1, 10}], 60] RealDigits[c2, 10, 60, -1] (* A190411 *) c1 + c2 (* very close to 1 *)
-
Sage
def A190410(b): # Generate the constant with b bits of precision return N(sum([sum([(1/2)^(i+(j+i-2)*(j+i-1)/2) for i in range(1,b)]) for j in range(1,b,2)]),b) A190410(350) # Danny Rorabaugh, Mar 24 2015
Extensions
a(62)-a(79) corrected and a(80)-a(103) added by Danny Rorabaugh, Mar 24 2015
Comments