A190412 Decimal expansion of sum over upper triangular subarray of array G defined at A190404.
8, 5, 6, 3, 5, 0, 3, 9, 5, 6, 0, 9, 7, 7, 9, 5, 7, 3, 9, 8, 1, 4, 6, 1, 8, 2, 3, 9, 9, 1, 4, 2, 4, 5, 4, 4, 8, 9, 9, 2, 9, 3, 9, 9, 9, 7, 1, 4, 3, 7, 9, 7, 5, 3, 2, 6, 2, 7, 5, 2, 1, 0, 4, 0, 3, 7, 2, 3, 4, 0, 7, 0, 1, 8, 5, 0, 2, 9, 5, 7, 7, 2, 2, 8, 7, 3, 0, 4, 3, 7, 1, 8, 1, 0, 9, 5, 6, 1, 1, 8, 8, 7, 1, 9, 2, 7
Offset: 0
Examples
0.85635039560977957398146182399142454489929399971437975...
Links
- Danny Rorabaugh, Table of n, a(n) for n = 0..500
Programs
-
Mathematica
f[i_, j_] := i + (j + i - 2)(j + i - 1)/2; (* natural number array, A000027 *) g[i_, j_] := (1/2)^f[i, j]; d[h_] := Sum[g[i,i+h-1], {i,1,250}]; (* h-th up-diag sum *) e[h_] := Sum[g[i+h,i], {i,1,250}]; (* h-th low-diag sum *) c1 = N[Sum[d[j], {j, 1, 30}], 50] RealDigits[c1, 10, 50, -1] (* A190412 *) c2 = N[Sum[e[i], {i, 1, 30}], 50] RealDigits[c2, 10, 50, -1] (* A190415 *) c1 + c2 (* very close to 1 *)
-
Sage
def A190412(b): # Generate the constant with b bits of precision return N(sum([sum([(1/2)^(i+(j+2*i-3)*(j+2*i-2)/2) for i in range(1,b)]) for j in range(1,b)]),b) A190412(365) # Danny Rorabaugh, Mar 26 2015
Extensions
a(49) corrected and a(50)-a(105) added by Danny Rorabaugh, Mar 24 2015
Comments