A190415 Decimal expansion of sum over lower triangular subarray of array G defined at A190404.
1, 4, 3, 6, 4, 9, 6, 0, 4, 3, 9, 0, 2, 2, 0, 4, 2, 6, 0, 1, 8, 5, 3, 8, 1, 7, 6, 0, 0, 8, 5, 7, 5, 4, 5, 5, 1, 0, 0, 7, 0, 6, 0, 0, 0, 2, 8, 5, 6, 2, 0, 2, 4, 6, 7, 3, 7, 2, 4, 7, 8, 9, 5, 9, 6, 2, 7, 6, 5, 9, 2, 9, 8, 1, 4, 9, 7, 0, 4, 2, 2, 7, 7, 1, 2, 6, 9, 5, 6, 2, 8, 1, 8, 9, 0, 4, 3, 8, 8, 1, 1, 2, 8, 0, 7, 2, 6, 7, 8, 7, 0, 8
Offset: 0
Examples
0.14364960439022042601853817600857545510070600028562...
Links
- Danny Rorabaugh, Table of n, a(n) for n = 0..500
Programs
-
Mathematica
f[i_, j_] := i + (j + i - 2)(j + i - 1)/2; (* natural number array, A000027 *) g[i_, j_] := (1/2)^f[i, j]; d[h_] := Sum[g[i,i+h-1], {i,1,250}]; (* h-th up-diag sum *) e[h_] := Sum[g[i+h,i], {i,1,250}]; (* h-th low-diag sum *) c1 = N[Sum[d[j], {j, 1, 30}], 50] RealDigits[c1, 10, 50, -1] (* A190412 *) c2 = N[Sum[e[i], {i, 1, 30}], 50] RealDigits[c2, 10, 50, -1] (* A190415 *) c1 + c2 (* very close to 1 *)
-
Sage
def A190415(b): # Generate the constant with b bits of precision return N(sum([sum([(1/2)^(i+j+(j+2*i-2)*(j+2*i-1)/2) for i in range(1,b)]) for j in range(1,b)]),b) A190415(379) # Danny Rorabaugh, Mar 26 2015
Extensions
a(50)-a(111) from Danny Rorabaugh, Mar 26 2015
Comments