A190431 a(n) = [(b*n+c)*r] - b*[n*r] - [c*r], where (r,b,c)=(golden ratio,3,1) and []=floor.
2, 1, 3, 2, 0, 2, 1, 3, 2, 1, 3, 1, 0, 2, 1, 3, 2, 0, 2, 1, 3, 2, 1, 3, 1, 0, 2, 1, 3, 2, 1, 2, 1, 0, 2, 1, 3, 2, 0, 2, 1, 3, 2, 1, 3, 1, 0, 2, 1, 3, 2, 1, 2, 1, 3, 2, 1, 3, 2, 0, 2, 1, 3, 2, 1, 2, 1, 0, 2, 1, 3, 2, 0, 2, 1, 3, 2, 1, 3, 1, 0, 2, 1, 3, 2, 1, 2, 1, 0, 2, 1, 3, 2, 0, 2, 1, 3, 2, 1, 3, 1, 0, 2, 1, 3, 2, 1, 2, 1, 3, 2, 1, 3, 1, 0, 2, 1, 3, 2, 1, 2, 1, 0, 2, 1, 3, 2, 0, 2, 1, 3, 2, 1, 3, 1, 0
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[Floor((3*n+1)*(1+Sqrt(5))/2) - 3*Floor(n*(1+Sqrt(5))/2) - 1: n in [1..100]]; // G. C. Greubel, Apr 06 2018
-
Mathematica
r = GoldenRatio; b = 3; c = 1; f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r]; t = Table[f[n], {n, 1, 320}] (* A190431 *) Flatten[Position[t, 0]] (* A190432 *) Flatten[Position[t, 1]] (* A190433 *) Flatten[Position[t, 2]] (* A190434 *) Flatten[Position[t, 3]] (* A190435 *)
-
PARI
for(n=1,100, print1(floor((3*n+1)*(1+sqrt(5))/2) - 3*floor(n*(1+sqrt(5))/2) - 1, ", ")) \\ G. C. Greubel, Apr 06 2018
Formula
a(n) = floor((3*n+1)*(1+sqrt(5))/2) - 3*floor(n*(1+sqrt(5))/2) - 1. - G. C. Greubel, Apr 06 2018
Comments