cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190464 Numbers with prime factorization p^4*q^6.

Original entry on oeis.org

5184, 11664, 40000, 153664, 250000, 455625, 937024, 1265625, 1750329, 1827904, 1882384, 5345344, 8340544, 9529569, 10673289, 17909824, 20820969, 28344976, 37515625, 45265984, 59105344, 60886809, 73530625, 77228944, 95004009, 119946304, 143496441, 180848704, 204004089, 218803264
Offset: 1

Views

Author

Keywords

Comments

A subsequence of A175745 (Numbers with 35 divisors).
First different term in A175745 is 17179869184(=2^34).

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={4,6}; Select[Range[50000000],f] (*and*) lst={};Do[Do[If[n!=m,AppendTo[lst,Prime[n]^6*Prime[m]^4]], {n,50}],{m,50}]; Take[Union@lst,50]
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, (lim\16)^(1/6), t=p^6;forprime(q=2, (lim\t)^(1/4), if(p==q, next);listput(v,t*q^4))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011

Formula

Sum_{n>=1} 1/a(n) = P(4)*P(6) - P(10) = A085964 * A085966 - P(10) = 0.000320..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020