cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A190470 Numbers with prime factorization p^2*q^3*r^5 where p, q, and r are distinct primes.

Original entry on oeis.org

21600, 36000, 42336, 48600, 95256, 98784, 104544, 121500, 146016, 196000, 225000, 235224, 249696, 274400, 311904, 328536, 333396, 337500, 383328, 457056, 484000, 561816, 632736, 676000, 701784, 726624, 830304, 1028376, 1064800, 1156000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,3,5}; Select[Range[2500000],f] (*and*) lst={}; Do[If[k!=n && k!=m && n!=m, AppendTo[lst, Prime[k]^2*Prime[n]^3*Prime[m]^5]], {n,20}, {m,20}, {k,20}]; Take[Union@lst,60]
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\72)^(1/5), t1=p^5;forprime(q=2, (lim\t1)^(1/3), if(p==q, next);t2=t1*q^3;forprime(r=2, sqrt(lim\t2), if(p==r||q==r, next);listput(v,t2*r^2)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011

Formula

Sum_{n>=1} 1/a(n) = P(2)*P(3)*P(5) - P(2)*P(8) - P(3)*P(7) - P(5)^2 + 2*P(10) = 0.00025025315357155375895..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024

A190468 Numbers with prime factorization pq^4r^5.

Original entry on oeis.org

12960, 18144, 19440, 27216, 28512, 33696, 42768, 44064, 49248, 50544, 59616, 60000, 66096, 73872, 75168, 80352, 89424, 95904, 106272, 111456, 112752, 120528, 121824, 137376, 140000, 143856, 150000, 152928, 158112, 159408, 167184, 173664
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,4,5}; Select[Range[300000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\48)^(1/5), t1=p^5;forprime(q=2, (lim\t1)^(1/4), if(p==q, next);t2=t1*q^4;forprime(r=2, lim\t2, if(p==r||q==r, next);listput(v,t2*r)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011

A190469 Numbers with prime factorization p^2*q^2*r^6 where p, q, and r are distinct primes.

Original entry on oeis.org

14400, 28224, 69696, 72900, 78400, 97344, 142884, 166464, 193600, 207936, 270400, 304704, 352836, 379456, 462400, 484416, 492804, 529984, 553536, 562500, 577600, 788544, 842724, 846400, 893025, 906304, 968256, 1052676, 1065024, 1132096
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,2,6}; Select[Range[1600000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\36)^(1/6), t1=p^6;forprime(q=2, sqrt(lim\t1), if(p==q, next);t2=t1*q^2;forprime(r=q+1, sqrt(lim\t2), if(p==r,next);listput(v,t2*r^2)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011

Formula

Sum_{n>=1} 1/a(n) = P(2)^2*P(6)/2 - P(2)*P(8)/2 - P(4)*P(6)/2 - P(2)*P(8) + P(10) = 0.00024535673248061231753..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024
Showing 1-3 of 3 results.