cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190471 Numbers with prime factorization p^2*q^4*r^4 where p, q, and r are distinct primes.

Original entry on oeis.org

32400, 63504, 90000, 156816, 202500, 219024, 345744, 374544, 467856, 490000, 685584, 777924, 960400, 1089936, 1210000, 1245456, 1690000, 1774224, 2108304, 2178576, 2396304, 2480625, 2862864, 2890000, 3610000, 3640464, 4112784, 4511376
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,4,4}; Select[Range[3500000],f] (*and*) lst={}; Do[If[k!=n && k!=m && n!=m, AppendTo[lst, Prime[k]^2*Prime[n]^4*Prime[m]^4]], {n,33}, {m,33}, {k,33}]; Take[Union@lst,60]
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\4)^(1/8), t1=p^4;forprime(q=p+1, (lim\t1)^(1/4), t2=t1*q^4;forprime(r=2, sqrt(lim\t2), if(p==r||q==r, next);listput(v,t2*r^2)))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016

Formula

Sum_{n>=1} 1/a(n) = P(2)*P(4)^2/2 - P(2)*P(8)/2 - P(4)*P(6) + P(10) = 0.00010139253539568059065..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024