cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190481 Number of distinct integers with n digits which are the image of integers by the function Reverse and Add!.

Original entry on oeis.org

4, 14, 93, 256, 1793, 4872, 34107, 92590, 648154, 1759313, 12315269, 33427272, 233991155, 635119194, 4445835138, 12067267861, 84470877438, 229278099157, 1604946701532, 4356283914175, 30493987422124, 82769394462323, 579385761306789, 1572618495070552
Offset: 1

Views

Author

Aldo González Lorenzo, May 25 2011

Keywords

Comments

a(n) is the cardinality of the set of Image(Reverse and Add!) intersected with [10^(n-1), 10^n[. Here we suppose that the domain of the function Reverse and Add! is {1, 2, 3, ...}
There are 4, 50, 450, 4590, 45405,... (A232731) ways to obtain integers with n = 1,2,... digits as images under the function "Reverse and add!", but many result in the same image and are counted here only once. Example: 11+digrev(11) = 22 and 20+digrev(20)=22 contribute only once to the set of distinct images at n=2. - R. J. Mathar, Jun 17 2011

Examples

			Example: let RaA(x) be the function Reverse and Add!, then:
RaA(1)=2
RaA(2)=4
RaA(3)=6
RaA(4)=8
RaA(5)=10
RaA(6)=11, ...
So a(1) is the cardinal of {2,4,6,8}, which is 4:
		

Crossrefs

Programs

  • Maple
    A055642 := proc(n) max(1,1+ilog10(n)) ; end proc:
    A056964 := proc(n) n+digrev(n) ; end proc:
    A190481 := proc(n) local s,i,ra ; s := {} ; for i from 1 to 10^n do ra := A056964(i) ; if A055642( ra) = n then s := s union {ra}  ; end if; end do: nops(s) ; end proc:
    for n from 1 do print(n,A190481(n)) ; end do: # R. J. Mathar, Jun 17 2011

Formula

Empirical g.f.: x*(4 + 18*x + 23*x^2 - 29*x^3 - 58*x^4 - 34*x^5 - 81*x^6 - 45*x^7 - 32*x^8 - 9*x^9) / ((1 + x)*(1 - 19*x^2)*(1 - 2*x + x^2 - x^3)*(1 + 2*x + x^2 + x^3)). - Colin Barker, Mar 20 2017

Extensions

a(9)-a(10) from Lars Blomberg, Dec 01 2013
a(11)-a(24) from Hiroaki Yamanouchi, Sep 04 2014