cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Aldo González Lorenzo

Aldo González Lorenzo's wiki page.

Aldo González Lorenzo has authored 4 sequences.

A260550 a(n) is the number of 2 X 2 matrices with entries in {1, ..., n} that are not the product of two 2 X 2 positive integer matrices.

Original entry on oeis.org

1, 15, 75, 237, 559, 1157, 2055, 3471, 5449, 8131, 11633, 16361, 22041, 29349, 38329, 48839, 61325, 76479, 93957, 114717, 138041, 164153, 194505, 229625, 268259, 311031, 359719, 413245, 472145, 537835, 608837, 688121, 774877, 867549, 971403, 1080637, 1198233, 1326059, 1467029, 1617451, 1777881, 1948219, 2132381, 2329081, 2539351
Offset: 1

Author

Aldo González Lorenzo, Jul 29 2015

Keywords

Comments

a(n) <= A000583(n), which is the number of 2 X 2 matrices with entries in {1, ..., n}.
a(n) >= A005917(n), which is the number of 2 X 2 matrices with entries in {1, ..., n} that contain the element 1. All such matrices are not decomposable as a product of 2 X 2 positive integer matrices.
This definition is a generalization of the notion of prime numbers to the family of 2 X 2 positive integer matrices. Since the matrices do not contain 0, max(A*B) > max(A) and max(A*B) > max(B). Thus, for every matrix there is a finite number of possible decompositions to check.

Examples

			The matrix [2,2;3,3] is decomposable: [2,2;3,3] = [1,1;1,2] * [1,1;1,1]. However, the matrix [2,3;3;2] is not decomposable.
		

Crossrefs

Programs

  • Python
    # See Branicky link.

A197168 Number of 2 X 2 integer matrices with elements from {1,...,n} whose determinant is 2.

Original entry on oeis.org

0, 0, 2, 6, 18, 30, 50, 70, 98, 118, 162, 198, 226, 270, 338, 366, 426, 486, 554, 622, 682, 726, 842, 926, 986, 1062, 1202, 1270, 1362, 1470, 1562, 1678, 1802, 1878, 2066, 2158, 2250, 2390, 2602, 2694, 2818, 2974, 3114, 3278, 3434, 3526, 3786, 3966, 4090, 4254, 4490
Offset: 0

Author

Aldo González Lorenzo, Oct 10 2011

Keywords

Comments

It is also the number of 2 X 2 integer matrices with elements from {1,...,n} whose determinant is -2.

Programs

  • Mathematica
    Table[cnt = 0; Do[If[a*d-b*c == 2, cnt++], {a, n}, {b, n}, {c, n}, {d, n}]; cnt, {n, 50}] (* T. D. Noe, Oct 11 2011 *)

Formula

a(n) = A209973(n) - 4*n - 2 for n >= 2. - Chai Wah Wu, Nov 28 2016

Extensions

a(0) added by Chai Wah Wu, Nov 27 2016

A196227 Number of 2 X 2 integer matrices with elements from {1,...,n} whose determinant is 1.

Original entry on oeis.org

0, 0, 2, 8, 14, 28, 34, 56, 70, 92, 106, 144, 158, 204, 226, 256, 286, 348, 370, 440, 470, 516, 554, 640, 670, 748, 794, 864, 910, 1020, 1050, 1168, 1230, 1308, 1370, 1464, 1510, 1652, 1722, 1816, 1878, 2036, 2082, 2248, 2326, 2420, 2506, 2688, 2750, 2916, 2994
Offset: 0

Author

Aldo González Lorenzo, Sep 29 2011

Keywords

Comments

It is also the number of 2 X 2 integer matrices with elements from {1,...,n} whose determinant is -1.

Crossrefs

Cf. A171503 (determinants of matrices that include zero), A209978, A210000.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 0,
          a(n-1)-2 + 4*numtheory[phi](n))
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, May 05 2020
  • Mathematica
    Table[cnt = 0; Do[If[a*d-b*c == 1, cnt++], {a, n}, {b, n}, {c, n}, {d, n}]; cnt, {n, 50}] (* T. D. Noe, Oct 11 2011 *)
  • PARI
    a(n) = if(n < 1, 0, 4*sum(k=1, n, eulerphi(k)) - 2*(n + 1)) \\ Andrew Howroyd, May 05 2020

Formula

From Andrew Howroyd, May 05 2020: (Start)
a(n) = A171503(n) - (2*n + 1) for n > 0.
a(n) = -2*(n + 1) + 4*Sum_{k=1..n} phi(k) for n > 0.
a(n) = 2 * A209978(n). (End)

Extensions

a(0)=0 prependend by Andrew Howroyd, May 05 2020

A190481 Number of distinct integers with n digits which are the image of integers by the function Reverse and Add!.

Original entry on oeis.org

4, 14, 93, 256, 1793, 4872, 34107, 92590, 648154, 1759313, 12315269, 33427272, 233991155, 635119194, 4445835138, 12067267861, 84470877438, 229278099157, 1604946701532, 4356283914175, 30493987422124, 82769394462323, 579385761306789, 1572618495070552
Offset: 1

Author

Aldo González Lorenzo, May 25 2011

Keywords

Comments

a(n) is the cardinality of the set of Image(Reverse and Add!) intersected with [10^(n-1), 10^n[. Here we suppose that the domain of the function Reverse and Add! is {1, 2, 3, ...}
There are 4, 50, 450, 4590, 45405,... (A232731) ways to obtain integers with n = 1,2,... digits as images under the function "Reverse and add!", but many result in the same image and are counted here only once. Example: 11+digrev(11) = 22 and 20+digrev(20)=22 contribute only once to the set of distinct images at n=2. - R. J. Mathar, Jun 17 2011

Examples

			Example: let RaA(x) be the function Reverse and Add!, then:
RaA(1)=2
RaA(2)=4
RaA(3)=6
RaA(4)=8
RaA(5)=10
RaA(6)=11, ...
So a(1) is the cardinal of {2,4,6,8}, which is 4:
		

Crossrefs

Programs

  • Maple
    A055642 := proc(n) max(1,1+ilog10(n)) ; end proc:
    A056964 := proc(n) n+digrev(n) ; end proc:
    A190481 := proc(n) local s,i,ra ; s := {} ; for i from 1 to 10^n do ra := A056964(i) ; if A055642( ra) = n then s := s union {ra}  ; end if; end do: nops(s) ; end proc:
    for n from 1 do print(n,A190481(n)) ; end do: # R. J. Mathar, Jun 17 2011

Formula

Empirical g.f.: x*(4 + 18*x + 23*x^2 - 29*x^3 - 58*x^4 - 34*x^5 - 81*x^6 - 45*x^7 - 32*x^8 - 9*x^9) / ((1 + x)*(1 - 19*x^2)*(1 - 2*x + x^2 - x^3)*(1 + 2*x + x^2 + x^3)). - Colin Barker, Mar 20 2017

Extensions

a(9)-a(10) from Lars Blomberg, Dec 01 2013
a(11)-a(24) from Hiroaki Yamanouchi, Sep 04 2014