Original entry on oeis.org
0, 0, 1, 4, 7, 14, 17, 28, 35, 46, 53, 72, 79, 102, 113, 128, 143, 174, 185, 220, 235, 258, 277, 320, 335, 374, 397, 432, 455, 510, 525, 584, 615, 654, 685, 732, 755, 826, 861, 908, 939, 1018, 1041, 1124, 1163, 1210, 1253, 1344, 1375, 1458, 1497
Offset: 0
-
a:= proc(n) option remember; `if`(n<2, 0,
a(n-1)-1 + 2*numtheory[phi](n))
end:
seq(a(n), n=0..60); # Alois P. Heinz, May 05 2020
-
a = 1; b = n; z1 = 50;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, 0], {n, 0, z1}] (* A134506 *)
Table[c[n, 1], {n, 0, z1}] (* A196227 *)
%/2 (* A209978 *)
Table[2 c[n, 1], {n, 0, z1}](* A209979 *)
Table[c[n, 2], {n, 0, z1}] (* A197168 *)
%/2 (* A209980 *)
Table[c[n, 3], {n, 0, z1}] (* A210001 *)
Table[c[n, 4], {n, 0, z1}] (* A210002 *)
Table[c[n, 5], {n, 0, z1}] (* A210027 *)
A210000
Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n}.
Original entry on oeis.org
0, 6, 14, 30, 46, 78, 94, 142, 174, 222, 254, 334, 366, 462, 510, 574, 638, 766, 814, 958, 1022, 1118, 1198, 1374, 1438, 1598, 1694, 1838, 1934, 2158, 2222, 2462, 2590, 2750, 2878, 3070, 3166, 3454, 3598, 3790, 3918, 4238, 4334, 4670, 4830
Offset: 0
a(2)=6 counts these matrices (using reduced matrix notation):
(1,0,0,1), determinant = 1, inverse = (1,0,0,1)
(1,0,1,1), determinant = 1, inverse = (1,0,-1,1)
(1,1,0,1), determinant = 1, inverse = (1,-1,0,1)
(0,1,1,0), determinant = -1, inverse = (0,1,1,0)
(0,1,1,1), determinant = -1, inverse = (-1,1,1,0)
(1,1,1,0), determinant = -1, inverse = (0,1,1,-1)
See also the very useful list of cross-references in the Comments section.
-
a = 0; b = n; z1 = 50;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, 0], {n, 0, z1}] (* A059306 *)
Table[c[n, 1], {n, 0, z1}] (* A171503 *)
2 % (* A210000 *)
Table[c[n, 2], {n, 0, z1}] (* A209973 *)
%/4 (* A209974 *)
Table[c[n, 3], {n, 0, z1}] (* A209975 *)
Table[c[n, 4], {n, 0, z1}] (* A209976 *)
Table[c[n, 5], {n, 0, z1}] (* A209977 *)
A209982
Number of 2 X 2 matrices having all elements in {-n,...,n} and determinant 1.
Original entry on oeis.org
0, 20, 52, 116, 180, 308, 372, 564, 692, 884, 1012, 1332, 1460, 1844, 2036, 2292, 2548, 3060, 3252, 3828, 4084, 4468, 4788, 5492, 5748, 6388, 6772, 7348, 7732, 8628, 8884, 9844, 10356, 10996, 11508, 12276, 12660, 13812, 14388, 15156
Offset: 0
-
(See the Mathematica section at A209981.)
-
a(n)=if(n<1, 0, 32*sum(k=1, n, eulerphi(k)) - 12) \\ Andrew Howroyd, May 05 2020
A209979
Number of unimodular 2 X 2 matrices having all elements in {1,2,...,n}.
Original entry on oeis.org
0, 0, 4, 16, 28, 56, 68, 112, 140, 184, 212, 288, 316, 408, 452, 512, 572, 696, 740, 880, 940, 1032, 1108, 1280, 1340, 1496, 1588, 1728, 1820, 2040, 2100, 2336, 2460, 2616, 2740, 2928, 3020, 3304, 3444, 3632, 3756, 4072, 4164, 4496, 4652, 4840
Offset: 0
Showing 1-4 of 4 results.
Comments