A190525 Number of n-step one-sided prudent walks, avoiding exactly two consecutive west steps (can have three or more west steps).
1, 3, 6, 15, 34, 80, 185, 431, 1001, 2328, 5411, 12580, 29244, 67985, 158045, 367411, 854126, 1985603, 4615966, 10730820, 24946129, 57992715, 134816705, 313410816, 728591751, 1693770328, 3937538296, 9153665985, 21279691689, 49469281395
Offset: 0
Examples
a(2) = 6 since there are 6 such walks: NN, NW, WN, EE, EN, NE.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- S. Gao and H. Niederhausen, Sequences Arising From Prudent Self-Avoiding Walks, 2010.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-1,1).
Programs
-
Magma
I:=[1,3,6,15]; [n le 4 select I[n] else 2*Self(n-1) +Self(n-2) -Self(n-3) +Self(n-4): n in [1..40]]; // G. C. Greubel, Apr 17 2021
-
Maple
A190525 := proc(n) option remember: if n=0 then 1 elif n=1 then 3 elif n=2 then 6 elif n=3 then 15 else 2*procname(n-1) + procname(n-2) - procname(n-3) + procname(n-4) fi: end: seq(A190525(n), n=0..29); # Johannes W. Meijer, Jul 20 2011
-
Mathematica
LinearRecurrence[{2,1,-1,1}, {1,3,6,15}, 40] (* G. C. Greubel, Apr 17 2021 *)
-
Sage
def A190525_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x-x^2+x^3)/(1-2*x-x^2+x^3-x^4) ).list() A190525_list(40) # G. C. Greubel, Apr 17 2021
Formula
G.f.: (1+x-x^2+x^3)/(1-2*x-x^2+x^3-x^4).
From Johannes W. Meijer, Jul 20 2011: (Start)
a(n) = 2*a(n-1) + a(n-2) - a(n-3) + a(n-4) with a(0) = 1, a(1) = 3, a(2) = 6 and a(3) = 15.
Comments