cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190525 Number of n-step one-sided prudent walks, avoiding exactly two consecutive west steps (can have three or more west steps).

Original entry on oeis.org

1, 3, 6, 15, 34, 80, 185, 431, 1001, 2328, 5411, 12580, 29244, 67985, 158045, 367411, 854126, 1985603, 4615966, 10730820, 24946129, 57992715, 134816705, 313410816, 728591751, 1693770328, 3937538296, 9153665985, 21279691689, 49469281395
Offset: 0

Views

Author

Shanzhen Gao, May 11 2011

Keywords

Comments

The Ze2 sums, see A180662 for the definition of these sums, of the 'Races with Ties' triangle A035317 leads to this sequence with a(-1) = 1; the recurrence relation confirms this value. - Johannes W. Meijer, Jul 20 2011
Number of tilings of a 5 X 3n rectangle with 5 X 1 pentominoes. - M. Poyraz Torcuk, Dec 25 2021

Examples

			a(2) = 6 since there are 6 such walks: NN, NW, WN, EE, EN, NE.
		

Programs

  • Magma
    I:=[1,3,6,15]; [n le 4 select I[n] else 2*Self(n-1) +Self(n-2) -Self(n-3) +Self(n-4): n in [1..40]]; // G. C. Greubel, Apr 17 2021
    
  • Maple
    A190525 := proc(n) option remember: if n=0 then 1 elif n=1 then 3 elif n=2 then 6 elif n=3 then 15 else 2*procname(n-1) + procname(n-2) - procname(n-3) + procname(n-4) fi: end: seq(A190525(n), n=0..29); # Johannes W. Meijer, Jul 20 2011
  • Mathematica
    LinearRecurrence[{2,1,-1,1}, {1,3,6,15}, 40] (* G. C. Greubel, Apr 17 2021 *)
  • Sage
    def A190525_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x-x^2+x^3)/(1-2*x-x^2+x^3-x^4) ).list()
    A190525_list(40) # G. C. Greubel, Apr 17 2021

Formula

G.f.: (1+x-x^2+x^3)/(1-2*x-x^2+x^3-x^4).
From Johannes W. Meijer, Jul 20 2011: (Start)
a(n) = 2*a(n-1) + a(n-2) - a(n-3) + a(n-4) with a(0) = 1, a(1) = 3, a(2) = 6 and a(3) = 15.
a(n) = (9*A095263(n+1) - 8*A095263(n) + 5*A095263(n-1) - 2*(-1)^n)/7. (End)