A190535 Number of (n+2) X (n+2) symmetric binary matrices without the pattern 0 1 1 diagonally.
56, 672, 13440, 443520, 23950080, 2107607040, 301387806720, 69921971159040, 26290661155799040, 16011012643881615360, 15786858466867272744960, 25195826113120167300956160, 65080818850189392138369761280
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..0..1..0..1....1..1..1..1....0..1..1..0....0..1..1..1....1..1..1..1 ..1..0..0..0....1..0..0..0....1..1..1..0....1..1..0..1....1..0..0..1 ..0..0..0..0....1..0..0..0....1..1..0..1....1..0..0..1....1..0..0..0 ..1..0..0..0....1..0..0..1....0..0..1..1....1..1..1..0....1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..60
Programs
-
Mathematica
Table[Det[Array[KroneckerDelta[#1,#2](Fibonacci[#1+1]-1)+1&,{n,n}]],{n,5,20}] (* John M. Campbell, May 25 2011 *)
-
PARI
a(n) = matdet(matrix(n+4, n+4, i, j, if (i==j, fibonacci(i+1), 1))); \\ Michel Marcus, Jan 03 2016
Comments