cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190590 Expansion of series reversion of x/(1 + x + 2*x^4).

Original entry on oeis.org

1, 1, 1, 1, 3, 11, 31, 71, 157, 397, 1141, 3301, 9087, 24311, 66067, 185771, 532121, 1520889, 4316233, 12255913, 35079739, 101232419, 293236615, 849895311, 2465119669, 7167636741, 20909386941, 61162159501, 179214613111, 525803297743, 1544899158331
Offset: 1

Views

Author

Vladimir Kruchinin, May 26 2011

Keywords

Examples

			g.f.: x + x^2 + x^3 + x^4 + 3*x^5 + 11*x^6 + 31*x^7 + ...
		

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x/(1+x+2*x^4),{x,0,20}],x],x]] (* Vaclav Kotesovec, Aug 20 2013 *)
  • Maxima
    a(n):=sum(binomial(j, -3*n+4*j-1)*2^(n-j)*binomial(n, j), j, floor((3*n+1)/4), n)/n;
    
  • PARI
    x='x+O('x^66); /* that many terms */
    Vec(serreverse(x/(1+x+2*x^4))) /* show terms */ /* Joerg Arndt, May 27 2011 */

Formula

a(n) = Sum_{j=floor((3*n+1)/4)..n} binomial(j,-3*n+4*j-1)*2^(n-j)*binomial(n,j)/n.
Recurrence: 3*(n-1)*(3*n-7)*(3*n+1)*a(n) = 3*(2*n-3)*(18*n^2 - 54*n + 29)*a(n-1) - 3*(n-2)*(54*n^2 - 216*n + 209)*a(n-2) + 54*(n-3)*(n-2)*(2*n-5)*a(n-3) + 485*(n-4)*(n-3)*(n-2)*a(n-4). - Vaclav Kotesovec, Aug 20 2013
a(n) ~ 6^(1/4)*sqrt(2*6^(3/4)+16)*(1+4/3*6^(1/4))^n/(24*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 20 2013