cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190623 Mobius transform of A008457.

Original entry on oeis.org

1, 6, 27, 64, 125, 162, 343, 512, 729, 750, 1331, 1728, 2197, 2058, 3375, 4096, 4913, 4374, 6859, 8000, 9261, 7986, 12167, 13824, 15625, 13182, 19683, 21952, 24389, 20250, 29791, 32768, 35937, 29478, 42875, 46656, 50653, 41154, 59319, 64000, 68921, 55566, 79507, 85184, 91125, 73002, 103823, 110592, 117649
Offset: 1

Views

Author

N. J. A. Sloane, May 14 2011

Keywords

Comments

Multiplicative because A008457 is. - Andrew Howroyd, Jul 23 2018

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 195.

Crossrefs

Cf. A008457.

Programs

  • Mathematica
    b[n_] := (-1)^n Sum[(-1)^d d^3, {d, Divisors[n]}];
    a[n_] := Sum[MoebiusMu[d] b[n/d], {d, Divisors[n]}];
    Array[a, 49] (* Jean-François Alcover, Sep 07 2019, from PARI *)
    f[p_, e_] := p^(3*e); f[2, 1] = 6; f[2, e_] := 8^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 03 2022 *)
  • PARI
    \\ here b(n) is A008457.
    b(n)=(-1)^n*sumdiv(n, d, (-1)^d*d^3);
    a(n)=sumdiv(n, d, moebius(d)*b(n/d)); \\ Andrew Howroyd, Jul 23 2018

Formula

From Amiram Eldar, Dec 03 2022: (Start)
Multiplicative with a(2) = 6, a(2^e) = 8^e for e > 1, and a(p^e) = p^(3*e) for p > 2.
Dirichlet g.f.: zeta(s-3)*(1 - 2^(1-s) + 4^(2-s)).
Sum_{k=1..n} a(k) ~ (15/64) * n^4. (End)