A190638 Numbers n such that with b=n*(2n-1) two remainders x and y are defined via x = 2^(b-1) -1 mod b and y = (2*n-1)^(b-1) - 1 mod b which satisfy x==y==0 (mod n) and y-x=n.
5, 41, 257, 2309, 14621, 48821, 125429, 177269, 1595417, 5278001, 10596137, 15146069, 21523361, 63993929, 83629517, 111321257, 363526421, 375805589, 427518041, 446072909, 552010829, 752665649, 1980098177
Offset: 1
Keywords
Examples
For n=41, b = 41*(2*41-1)=3321. So 2^3320 == 3199 (mod 3321) leads to x = 3199 - 1 = 3198 which satisfies x == 0 (mod 41), and 81^3320 == 3240 (mod 3321) leads to y = 3240 - 1 = 3239 which satisfies y == 0 (mod 41) and y - x = 41. Therefore n=41 is in the sequence.
Programs
-
Maple
isA190638 := proc(n) local b,x,y; b := n*(2*n-1) ; x := modp( 2 &^ (b-1),b) -1; y := modp( (2*n-1) &^ (b-1),b) -1; if y-x =n and modp(x,n) = 0 and modp(y,n) = 0 then true; else false; end if; end proc: for n from 2 do if isA190638(n) then print(n); end if; end do: # R. J. Mathar, Jun 04 2011
Comments