cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190665 Numbers k such that sum of aliquot parts of k is a nontrivial power: sigma(k) - k = a^b for integers a>1, b>1.

Original entry on oeis.org

9, 10, 12, 15, 24, 26, 49, 56, 58, 69, 75, 76, 90, 95, 119, 122, 124, 133, 140, 143, 147, 153, 176, 194, 215, 243, 287, 332, 363, 386, 407, 429, 477, 495, 507, 511, 524, 527, 536, 551, 568, 575, 578, 688, 717, 738, 791, 794, 815, 867, 871, 892, 924, 935, 961, 963, 992, 1001, 1018, 1075, 1083, 1159, 1196, 1199, 1243, 1295, 1304, 1324, 1346, 1391, 1415, 1421, 1431, 1532, 1573, 1587
Offset: 1

Views

Author

Antonio Roldán, May 16 2011

Keywords

Comments

Similar to A065496.

Examples

			122: aliquot parts: 1, 2, 61, sum: 1+2+61 = 64 = 8^2
140: sum of aliquot parts: 1+2+4+5+7+10+14+20+28+35+70 = 196 = 14^2.
		

Crossrefs

Programs

  • Maple
    isA001597 := proc(n) for a from 2 do if a^2 > n then return false; end if; for b from 2 do if a^b =n then return true; elif a^b>n then break; end if; end do; end do: end proc:
    isA190665 := proc(n) isA001597(numtheory[sigma](n)-n) ; end proc:
    for n from 1 to 2000 do if isA190665(n) then printf("%d,",n) ; end if; end do; # R. J. Mathar, May 30 2011
  • Mathematica
    powerQ[n_] := GCD @@ FactorInteger[n][[All, 2]] > 1;
    okQ[n_] := powerQ[DivisorSigma[1, n] - n];
    Select[Range[2000], okQ] (* Jean-François Alcover, Jul 31 2024 *)
  • PARI
    ypower(n)= { local(f, p=0); f=factor(n); if(gcd(f[, 2])>1,p=1); return(p) }
    {  for (n=1, 1000, a=sigma(n)-n; if(ypower(a), print1(n," "))) }
    /* Antonio Roldán, Oct 23 2012 */