A190676 [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(3),3,0) and [ ]=floor.
2, 1, 0, 2, 1, 1, 0, 2, 1, 0, 0, 2, 1, 0, 2, 2, 1, 0, 2, 1, 1, 0, 2, 1, 0, 0, 2, 1, 0, 2, 2, 1, 0, 2, 1, 1, 0, 2, 1, 0, 0, 2, 1, 0, 2, 2, 1, 0, 2, 1, 1, 0, 2, 1, 0, 2, 2, 1, 0, 2, 1, 1, 0, 2, 1, 0, 0, 2, 1, 0, 2, 2, 1, 0, 2, 1, 1, 0, 2, 1, 0, 0, 2, 1, 0, 2, 2, 1, 0, 2, 1, 1, 0, 2, 1, 0, 0, 2, 1, 0, 2, 2, 1, 0, 2, 1, 0, 0, 2, 1, 0, 2, 2, 1, 0, 2, 1, 1, 0, 2, 1, 0, 0, 2, 1, 0, 2, 2, 1, 0, 2, 1
Offset: 1
Keywords
Programs
-
Mathematica
r = Sqrt[3]; b = 3; c = 0; f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r]; t = Table[f[n], {n, 1, 200}] (* A190676 *) Flatten[Position[t, 0]] (* A190677 *) Flatten[Position[t, 1]] (* A190678 *) Flatten[Position[t, 2]] (* A190679 *) Table[Floor[3n Sqrt[3]]-3Floor[n Sqrt[3]],{n,140}] (* Harvey P. Dale, Mar 24 2013 *)
Formula
a(n)=[3n*sqrt(3)]-3[n*sqrt(3)].
Extensions
Definition (Name) corrected by Harvey P. Dale, Mar 24 2013
Comments