A190717 Triplicated tetrahedral numbers A000292.
1, 1, 1, 4, 4, 4, 10, 10, 10, 20, 20, 20, 35, 35, 35, 56, 56, 56, 84, 84, 84, 120, 120, 120, 165, 165, 165, 220, 220, 220, 286, 286, 286, 364, 364, 364, 455, 455, 455, 560, 560, 560, 680, 680, 680, 816, 816, 816, 969, 969, 969
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,3,-3,0,-3,3,0,1,-1).
Crossrefs
Programs
-
Maple
A190717:= proc(n) option remember; A190717(n):= binomial(floor(n/3)+3,3) end: seq(A190717(n),n=0..50);
-
Mathematica
LinearRecurrence[{1,0,3,-3,0,-3,3,0,1,-1},{1,1,1,4,4,4,10,10,10,20},60] (* Harvey P. Dale, Mar 09 2018 *)
Formula
a(n) = binomial(floor(n/3)+3,3).
a(n) + a(n-1) + a(n-2) = A144677(n).
G.f.: 1/((x-1)^4*(x^2+x+1)^3).
Sum_{n>=0} 1/a(n) = 9/2. - Amiram Eldar, Aug 18 2022
Comments