cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190718 Quadruplicated tetrahedral numbers A000292.

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 4, 4, 10, 10, 10, 10, 20, 20, 20, 20, 35, 35, 35, 35, 56, 56, 56, 56, 84, 84, 84, 84, 120, 120, 120, 120, 165, 165, 165, 165, 220, 220, 220, 220, 286, 286, 286, 286, 364, 364, 364, 364, 455, 455, 455, 455
Offset: 0

Views

Author

Johannes W. Meijer, May 18 2011

Keywords

Comments

The Gi1 triangle sums, for the definitions of these and other triangle sums see A180662, of the triangle A159797 are linear sums of shifted versions of the quadruplicated tetrahedral numbers A000292, i.e., Gi1(n) = a(n-1) + a(n-2) + a(n-3) + 2*a(n-4) + a(n-8).
The Gi1 and Gi2 triangle sums of the Connell sequence A001614 as a triangle are also linear sums of shifted versions of the sequence given above.

Crossrefs

Cf. A000292 (tetrahedral numbers), A058187 (duplicated), A190717 (triplicated).

Programs

  • Maple
    A190718:= proc(n) binomial(floor(n/4)+3,3) end:
    seq(A190718(n),n=0..52);
  • Mathematica
    LinearRecurrence[{1,0,0,3,-3,0,0,-3,3,0,0,1,-1},{1,1,1,1,4,4,4,4,10,10,10,10,20},60] (* Harvey P. Dale, Oct 20 2012 *)

Formula

a(n) = binomial(floor(n/4)+3,3).
a(n-3) + a(n-2) + a(n-1) + a(n) = A144678(n).
a(n) = +a(n-1) +3*a(n-4) -3*a(n-5) -3*a(n-8) +3*a(n-9) +a(n-12) -a(n-13).
G.f.: 1 / ( (1+x)^3*(1+x^2)^3*(x-1)^4 ).
Sum_{n>=0} 1/a(n) = 6. - Amiram Eldar, Aug 18 2022