cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190738 Central coefficients of the Riordan matrix A104259.

Original entry on oeis.org

1, 4, 27, 212, 1785, 15630, 140287, 1280592, 11833389, 110360150, 1036670272, 9794291556, 92972640761, 886023463122, 8471878678545, 81236546627920, 780898417097733, 7522708492892214, 72607180401922894, 701969331508141900, 6796919869909393140
Offset: 0

Views

Author

Emanuele Munarini, May 18 2011

Keywords

Crossrefs

Cf. A104259.

Programs

  • Mathematica
    Table[Sum[Binomial[2n,n+k]Binomial[n+2k,k](n+1)/(n+k+1),{k,0,n}],{n,0,20}]
  • Maxima
    makelist(sum(binomial(2*n,n+k)*binomial(n+2*k,k)*(n+1)/(n+k+1),k,0,n),n,0,20);

Formula

a(n) = T(2*n,n), where T(n,k) = A104259(n,k).
a(n) = sum(k=0..n, binomial(2*n,n+k)*binomial(n+2*k,k)*(n+1)/(n+k+1)).
Recurrence: 2*(n-1)*n*(2*n + 1)*(107*n^3 - 345*n^2 + 253*n + 12)*a(n) = (n-1)*(5029*n^5 - 16215*n^4 + 8284*n^3 + 13359*n^2 - 11675*n + 1974)*a(n-1) - 4*(2*n - 3)*(1498*n^5 - 4830*n^4 + 2899*n^3 + 3165*n^2 - 3254*n + 630)*a(n-2) + 100*(n-1)*(2*n - 5)*(2*n - 3)*(107*n^3 - 24*n^2 - 116*n + 27)*a(n-3). - Vaclav Kotesovec, Jul 05 2021
a(n) ~ sqrt(c) * d^n / sqrt(Pi*n), where d = 9.945658804810730213397409025621... is the real root of the equation -400 + 112*d - 47*d^2 + 4*d^3 = 0 and c = 0.3447849735035503206155951176700724872157... is the real root of the equation -125 - 173*c + 963*c^2 + 1712*c^3 = 0. - Vaclav Kotesovec, Jun 05 2022