cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190790 G.f. satisfies: A(x) = 1 + Sum_{n>=1} q^(2n-1)/(1 - q^(2n-1)) where q = x*A(x).

Original entry on oeis.org

1, 1, 2, 6, 18, 58, 198, 696, 2506, 9205, 34344, 129792, 495834, 1911640, 7428444, 29064650, 114404410, 452719183, 1799994588, 7187148262, 28807364008, 115865980972, 467497031164, 1891710323324, 7675031497682, 31215088847239
Offset: 0

Views

Author

Paul D. Hanna, May 20 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 18*x^4 + 58*x^5 + 198*x^6 +...
Let q = x*A(x), then the g.f. A(x) satisfies the following series:
* A(x) = 1 + q/(1 - q) + q^3/(1 - q^3) + q^5/(1 - q^5) + q^7/(1 - q^7) +...
* A(x) = 1 + q/(1 - q) + q^3/(1 - q^2) + q^6/(1 - q^3) + q^10/(1 - q^4) +...
* A(x) = 1 + q/(1 - q^2) + q^2/(1 - q^4) + q^3/(1 - q^6) + q^4/(1 - q^8) +...
* A(x) = 1 + q + q^2 + 2*q^3 + q^4 + 2*q^5 + 2*q^6 +...+ A001227(n)*q^n +...
		

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = 1 + Sum[(x*A[x])^(2*k-1)/(1 - (x*A[x])^(2*k-1)), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 28 2023 *)
    (* Calculation of constant d: *) val = r /. FindRoot[{(Log[1 - r^2*s^2] + QPolyGamma[0, -1/2, r^2*s^2]) / Log[r^2*s^2] == s - 1 - 1/(1 - r*s), r*(1/(-1 + r*s)^2 + (2*r* s*(1/(-1 + r^2*s^2) + Derivative[0, 0, 1][QPolyGamma][0, -1/2, r^2*s^2]))/ Log[r^2*s^2]) == 1 + (2*(s - 1 - 1/(1 - r*s)))/(s*Log[r^2*s^2])}, {r, 1/4}, {s, 2}, WorkingPrecision -> 200]; N[ 1/Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3] (* Vaclav Kotesovec, Sep 28 2023 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,(x*A)^(2*m-1)/(1-(x*A)^(2*m-1)+x*O(x^n))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,(x*A)^(m*(m+1)/2)/(1-(x*A)^m+x*O(x^n))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,(x*A)^m/(1-(x*A)^(2*m)+x*O(x^n))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(D=1+sum(m=1,n,sumdiv(m, d, d%2)*x^m)+x*O(x^n));polcoeff(1/x*serreverse(x/D),n)}
    
  • PARI
    {a(n)=local(D=1+sum(m=1,n,sumdiv(m, d, d%2)*x^m)+x*O(x^n));polcoeff(D^(n+1)/(n+1),n)}

Formula

G.f. A(x) satisfies:
* A(x) = 1 + Sum_{n>=1} q^(n*(n+1)/2)/(1 - q^n), where q = x*A(x);
* A(x) = 1 + Sum_{n>=1} q^n/(1 - q^(2n)), where q = x*A(x);
* A(x) = 1 + Sum_{n>=1} A001227(n)*x^n*A(x)^n, where A001227(n) = number of odd divisors of n.
Let D(x) = 1 + Sum_{n>=1} A001227(n)*x^n, then
* A(x) = D(x*A(x)) and D(x) = A(x/D(x));
* A(x) = (1/x)*Series_Reversion(x/D(x));
* a(n) = [x^n] D(x)^(n+1)/(n+1), the coefficient of x^n in D(x)^(n+1)/(n+1) for n>=0.
a(n) ~ c * d^n / n^(3/2), where d = 4.3154117906555438598489327064282723007551580672340735654761205324876... and c = 0.545252538971019249263783268322061859441589544238489362753993274... - Vaclav Kotesovec, Sep 28 2023