A190802 Gauss' approximation for the number of primes below 10^n.
5, 29, 177, 1245, 9629, 78627, 664917, 5762208, 50849234, 455055614, 4118066400, 37607950280, 346065645809, 3204942065691, 29844571475287, 279238344248556, 2623557165610821, 24739954309690414, 234057667376222381, 2220819602783663483
Offset: 1
Keywords
References
- Jonathan Borwein, David H. Bailey, "Mathematics by Experiment", A. K. Peters, 2004, p. 65 (Table 2.2).
Links
- Vladimir Pletser, Table of n, a(n) for n = 1..500
- Soren Laing Aletheia-Zomlefer, Lenny Fukshansky, and Stephan Ramon Garcia, The Bateman-Horn Conjecture: Heuristics, History, and Applications, arXiv:1807.08899 [math.NT], 2018-2019. See Table 1 p. 6.
Programs
-
Maple
seq(round(evalf(integrate(1/log(t),t=2..10^n))), n=1..21);
-
Mathematica
Table[Round[Integrate[1/Log[t],{t,2,10^n}]],{n,20}] (* James C. McMahon, Feb 06 2024 *)
Formula
a(n) = round(integral(dt/log(t),t=2..10^n)).
Comments