A228067
Difference of consecutive integers nearest to Li(10^n) - Li(2), where Li(x) = integral(0..x, dt/log(t)) (A190802, known as Gauss' approximation for the number of primes below 10^n).
Original entry on oeis.org
5, 24, 148, 1068, 8384, 68998, 586290, 5097291, 45087026, 404206380, 3663010786, 33489883880, 308457695529, 2858876419882, 26639629409596, 249393772773269, 2344318821362265, 22116397144079593, 209317713066531967, 1986761935407441102
Offset: 1
For n = 1, A190802(1) - A190802(0) = 5-0 = 5.
A106313
Differences between the prime-counting function and Gauss's approximation for number of primes < 10^n.
Original entry on oeis.org
1, 4, 9, 16, 37, 129, 338, 753, 1700, 3103, 11587, 38262, 108970, 314889, 1052618, 3214631, 7956588, 21949554, 99877774, 222744643, 597394253, 1932355207, 7250186215, 17146907277, 55160980938, 155891678120, 508666658005, 1427745660373, 4551193622463
Offset: 1
Given x = 10^4, pi(x) = 1229, Gauss's approximation = 1245. Thus a(4) = 1245 - 1229 = 16.
- Jonathan Borwein, David H. Bailey, Mathematics by Experiment, A. K. Peters, 2004, p. 65 (Table 2.2).
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.
-
Table[Round[Integrate[1/Log[t],{t,2,10^n}]]-PrimePi[10^n],{n,27}] (* James C. McMahon, Feb 01 2024 *)
A223166
Integer nearest to Li(10^n) - Li(3), where Li(x) = integral(0..x, dt/log(t)).
Original entry on oeis.org
4, 28, 175, 1244, 9628, 78625, 664916, 5762207, 50849233, 455055612, 4118066398, 37607950279, 346065645808, 3204942065690, 29844571475285, 279238344248555, 2623557165610820, 24739954309690413, 234057667376222380, 2220819602783663481
Offset: 1
-
seq(round(evalf(integrate(1/log(t), t=3..10^n))), n=1..1000);
-
Table[Round[LogIntegral[10^n]-LogIntegral[3]],{n,30}] (* Harvey P. Dale, Aug 24 2022 *)
A228068
Difference between the number of primes with n digits (A006879) and the difference of consecutive integers nearest to Li(10^n) - Li(2) (see A228067).
Original entry on oeis.org
-1, -3, -5, -7, -21, -92, -209, -415, -947, -1403, -8484, -26675, -70708, -205919, -737729, -2162013, -4741957, -13992966, -77928220, -122866869, -374649610, -1334960954, -5317831008, -9896721062, -38014073661
Offset: 1
A223167
Difference between nearest integer to (Li(10^n)-Li(3)) and pi(10^n), where Li(10^n)-Li(3) = integral(3.. 10^n, dt/log(t)) (A223166) and pi(10^n) = number of primes <= 10^n (A006880).
Original entry on oeis.org
0, 3, 7, 15, 36, 127, 337, 752, 1699, 3101, 11585, 38261, 108969, 314888, 1052616, 3214630, 7956587, 21949553, 99877773, 222744641, 597394252, 1932355206, 7250186214, 17146907276, 55160980937, 155891678119, 508666658004, 1427745660372
Offset: 1
-
a[n_] := Round[LogIntegral[10^n] - LogIntegral[3]] - PrimePi[10^n]; Table[a[n], {n, 1, 14}]
-
a(n)=round(eint1(-log(3))-eint1(-n*log(10)))-primepi(10^n) \\ Charles R Greathouse IV, May 03 2013
A225138
Difference between pi(10^n) and nearest integer to (4*((S(n))^(n-1))) where pi(10^n) = number of primes <= 10^n (A006880) and S(n) = Sum_{i=0..2} (C(i)*(log(log(A*(B+n^(8/3)))))^(2i)) (A225137).
Original entry on oeis.org
0, 0, 0, 1, 0, -31, -35, 193, 0, -13318, -153006, -828603, 957634, 86210559, 1293461717, 13497122460, 107995231864, 586760026575, -1942949, -54073500144915, -897247302459084, -9393904607181950, -54876701507521387, 379565456321952448
Offset: 1
- Jonathan Borwein, David H. Bailey, Mathematics by Experiment, A. K. Peters, 2004, p. 65 (Table 2.2).
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.
A226945
Integer nearest f(10^n), where f(x) = Sum of ( mu(k) * H(k)/k^(3/2) * Integral Log(x^(1/k)) ) for k = 1 to infinity, where H(k) is the harmonic number sum_{i=1..k} 1/i.
Original entry on oeis.org
4, 25, 168, 1226, 9585, 78521, 664652, 5761512, 50847348, 455050385, 4118051652, 37607908133, 346065524108, 3204941711340, 29844570436484, 279238341185832, 2623557156537070, 24739954282695698, 234057667295619287, 2220819602542218793
Offset: 1
-
f[n_Integer] := Sum[N[MoebiusMu[k]*HarmonicNumber[k]/k^(3/2)*LogIntegral[n^(1/k)], 50], {k, 5!}]; Table[Round[f[10^n]], {n, 20}]
A227694
Difference between pi(10^n) and nearest integer to (F[2n+1](S(n)))^2 where pi(10^n) = number of primes <= 10^n (A006880), F[2n+1](x) are Fibonacci polynomials of odd indices [2n+1] and S(n) = Sum_{i=0..2} (C(i)*(log(log(A*(B+n^2))))^(2i)) (see A227693).
Original entry on oeis.org
0, 0, 0, 0, -3, -29, 171, 2325, 13809, 33409, -443988, -8663889, -99916944, -927360109, -7318034084, -47993181878, -223530657736, 810207694, 16558446000251, 257071298610935, 2657469557986545, 18804132783879606, 24113768300809752, -2232929440358147845, -54971510676262602742
Offset: 1
- Jonathan Borwein, David H. Bailey, Mathematics by Experiment, A. K. Peters, 2004, p. 65 (Table 2.2).
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.
A229256
Difference between PrimePi(10^n) and its approximation by A229255(n).
Original entry on oeis.org
0, 0, 0, 0, 0, 10, 223, 144, -9998, -58280, 348134, 9517942, 92182430, 404027415, -2717447318, -79612186200, -983858494247, -7964818545554, -31776540093807, 289145607666924, 8243854930562789, 108476952917770938, 885519807642948390, 715407405727600672, -147909423143942345447
Offset: 1
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.
Cf.
A006880,
A229255,
A225137,
A215663,
A057793,
A057794,
A223166,
A223167,
A190802,
A106313,
A057752,
A227693,
A052435.
Showing 1-9 of 9 results.
Comments