cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A106313 Differences between the prime-counting function and Gauss's approximation for number of primes < 10^n.

Original entry on oeis.org

1, 4, 9, 16, 37, 129, 338, 753, 1700, 3103, 11587, 38262, 108970, 314889, 1052618, 3214631, 7956588, 21949554, 99877774, 222744643, 597394253, 1932355207, 7250186215, 17146907277, 55160980938, 155891678120, 508666658005, 1427745660373, 4551193622463
Offset: 1

Views

Author

Gary W. Adamson, Apr 28 2005

Keywords

Comments

From Vladimir Pletser, Mar 16 2013: (Start)
As Li(2) = 1.04516..., a(n) = A057752(n) - 1.
This sequence gives the exact values of the difference between Gauss's Li (defined as integral(2..10^n, dt/log(t)) or Li(10^n)-Li(2)) and the number of primes <= 10^n (A006880). For large values of x=10^n, Li(2) can be neglected but for small values of x=10^n, the value of Li(2) cannot be neglected.
This sequence yields a better average relative difference, i.e., average(a(n)/pi(10^n)) = 2.0116...x10^-2 for 1<=n<=24, compared to average(A057752(n)/pi(10^n)) = 3.2486...x10^-2. However see also Li(10^n)-Li(3) in A223166 and A223167.
Note that most of the Tables in the literature giving the difference of Li(10^n) - pi(10^n) use the values of A057752 as the difference between Gauss's Li values and pi(10^n). This is incorrect and the values above should be used instead. For example (certainly not exhaustive):
- John H. Conway and R. K. Guy in "The Book of Numbers" show in Fig. 5.2, p. 144, Li(N) as integral(2..10^n, dt/log(t)) but reports values of A057752 (the difference of integral(0..10^n, dt/log(t)) and pi(10^n)) in Table 5.2, p. 146;
- Eric Weisstein in "Prime Counting Function" gives also values of -(A057752) for pi(10^n)-Li(10^n)
- Wikipedia gives a Table with Li(10^n)-pi(10^n) (A057752);
- C. K. Caldwell in Table 3 in the link below give values of Li(10^n) while values of Li(10^n) - Li(2) would be more suited. (End)

Examples

			Given x = 10^4, pi(x) = 1229, Gauss's approximation = 1245. Thus a(4) = 1245 - 1229 = 16.
		

References

  • Jonathan Borwein, David H. Bailey, Mathematics by Experiment, A. K. Peters, 2004, p. 65 (Table 2.2).
  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.

Crossrefs

Programs

  • Mathematica
    Table[Round[Integrate[1/Log[t],{t,2,10^n}]]-PrimePi[10^n],{n,27}] (* James C. McMahon, Feb 01 2024 *)

Formula

The prime counting function pi(x) runs through x = 10^1, 10^2, 10^3, ...; being subtracted from Gauss's approximation, integral(2, x)dt/log t.
a(n) = A190802(n) - A006880(n).

Extensions

a(23)-a(24) from Nathaniel Johnston, May 25 2011
a(25)-a(28), obtained using A006880, added by Eduard Roure Perdices, Apr 16 2021
a(29) (using A006880) from Alois P. Heinz, Feb 01 2024
Name clarified by James C. McMahon, Feb 02 2024

A225138 Difference between pi(10^n) and nearest integer to (4*((S(n))^(n-1))) where pi(10^n) = number of primes <= 10^n (A006880) and S(n) = Sum_{i=0..2} (C(i)*(log(log(A*(B+n^(8/3)))))^(2i)) (A225137).

Original entry on oeis.org

0, 0, 0, 1, 0, -31, -35, 193, 0, -13318, -153006, -828603, 957634, 86210559, 1293461717, 13497122460, 107995231864, 586760026575, -1942949, -54073500144915, -897247302459084, -9393904607181950, -54876701507521387, 379565456321952448
Offset: 1

Views

Author

Vladimir Pletser, Apr 29 2013

Keywords

Comments

A225137 provides exactly the values of pi(10^n) for n = 1, 2, 3, 5 and 9 and yields an average relative difference in absolute value, i.e., average(abs(A225138(n))/pi(10^n)) = 7.2165...*10^-5 for 1 <= n <= 24.
A225137 provides a better approximation to the distribution of pi(10^n) than: (1) the Riemann function R(10^n), whether as the sequence of integers <= R(10^n) (A215663), which yields 1.453...*10^-4, or as the sequence of integers nearest to R(10^n) (A057794), which yields 0.01219...; (2) the functions of the logarithmic integral Li(x) = Integral_{t=0..x} dt/log(t), whether as the sequence of integers nearest to (Li(10^n) - Li(3)) (A223166), which yields 7.4969...x10^-3 (see A223167), or as Gauss's approximation to pi(10^n), i.e., the sequence of integers nearest to (Li(10^n) - Li(2)) (A190802) = 0.020116... (see A106313), or as the sequence of integers nearest to Li(10^n) (A057752), which yields 0.032486....

References

  • Jonathan Borwein, David H. Bailey, Mathematics by Experiment, A. K. Peters, 2004, p. 65 (Table 2.2).
  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.

Crossrefs

Formula

a(n) = A006880(n) - A225137(n).

A227694 Difference between pi(10^n) and nearest integer to (F[2n+1](S(n)))^2 where pi(10^n) = number of primes <= 10^n (A006880), F[2n+1](x) are Fibonacci polynomials of odd indices [2n+1] and S(n) = Sum_{i=0..2} (C(i)*(log(log(A*(B+n^2))))^(2i)) (see A227693).

Original entry on oeis.org

0, 0, 0, 0, -3, -29, 171, 2325, 13809, 33409, -443988, -8663889, -99916944, -927360109, -7318034084, -47993181878, -223530657736, 810207694, 16558446000251, 257071298610935, 2657469557986545, 18804132783879606, 24113768300809752, -2232929440358147845, -54971510676262602742
Offset: 1

Views

Author

Vladimir Pletser, Jul 19 2013

Keywords

Comments

A227693 provides exactly the values of pi(10^n) for n = 1 to 4 and yields an average relative difference in absolute value, average(abs(A227694(n))/pi(10^n)) = 1.58269...*10^-4 for 1 <= n <= 25.
A227693 provides a better approximation to the distribution of pi(10^n) than: (1) the Riemann function R(10^n) as the sequence of integers nearest to R(10^n) (A057794), which yields 0.01219...; (2) the functions of the logarithmic integral Li(x) = Integral_{t=0..x} dt/log(t), whether as the sequence of integers nearest to (Li(10^n) - Li(3)) (A223166), which yields 0.0074969... (see A223167), or as Gauss's approximation to pi(10^n), i.e., the sequence of integers nearest to (Li(10^n) - Li(2)) (A190802), which yields 0.020116... (see A106313), or as the sequence of integer nearest to Li(10^n) (A057752), which yields 0.032486....

References

  • Jonathan Borwein, David H. Bailey, Mathematics by Experiment, A. K. Peters, 2004, p. 65 (Table 2.2).
  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.

Crossrefs

Formula

a(n) = A006880(n) - A227693(n).

A229256 Difference between PrimePi(10^n) and its approximation by A229255(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 10, 223, 144, -9998, -58280, 348134, 9517942, 92182430, 404027415, -2717447318, -79612186200, -983858494247, -7964818545554, -31776540093807, 289145607666924, 8243854930562789, 108476952917770938, 885519807642948390, 715407405727600672, -147909423143942345447
Offset: 1

Views

Author

Vladimir Pletser, Sep 17 2013

Keywords

Comments

A229255 provides exact values of pi(10^n) for n=1 to 5 and yields an average relative difference in absolute value of Average(Abs(A229256(n))/pi(10^n)) = 2.05820...*10^-4 for 1<=n<=25.
A229255 provides a better approximation to the distribution of pi(10^n) than: (1) the Riemann function R(10^n) as the sequence of integers nearest to R(10^n), Average(Abs(A057794 (n))/pi(10^n)) =1.219...*10^-2; (2) the functions of the logarithmic integral Li(x) whether as the sequence of integer nearest to (Li(10^n)-Li(3)) (A223166) (Average(Abs(A223167(n))/pi(10^n))= 7.4969...*10^-3), or as Gauss’ approximation to pi(10^n), i.e. the sequence of integer nearest to (Li(10^n)-Li(2)) (A190802) (Average(Abs(A106313(n))/pi(10^n)) =2.0116...*10^-2), or as the sequence of integer nearest to Li(10^n) (A057752) (Average(Abs(A057752 (n))/pi(10^n)) =3.2486...*10^-2).

References

  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.

Crossrefs

Formula

a(n) = A006880(n) - A229255(n).
Showing 1-4 of 4 results.