cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Eduard Roure Perdices

Eduard Roure Perdices's wiki page.

Eduard Roure Perdices has authored 4 sequences.

A364787 a(n) is the stabilization index of the prime ladder [P(n,k) : k >= 0].

Original entry on oeis.org

0, 1, 3, 2, 7, 6, 17, 17, 19, 18, 13, 13, 11, 11, 47, 46, 39, 39, 59, 59, 68, 68, 71, 71, 61, 61, 60, 59, 56, 55, 49, 49, 47, 47, 334, 333, 508, 508, 488, 488, 466, 466, 423, 423, 512, 512, 488, 488, 468, 468, 450, 450, 696, 696, 652, 652, 639, 638, 613, 613
Offset: 0

Author

Eduard Roure Perdices, Aug 07 2023

Keywords

Comments

Given n >= 0, we consider the following increasing sequence of prime numbers: P(n,0) = 2, and for k > 0, P(n,k) is the largest prime number smaller than or equal to P(n,k-1)+n. Since the sequence of all prime numbers has arbitrarily long gaps, there exists an index m >= 0 such that P(n,m) = P(n,m+1). We define a(n) as the smallest of such indices.
Note that a(n) displays big jumps at values of n corresponding to maximal prime gaps (A005250).
In general, for k >= 0, a(2k+1) = a(2k), but there are exceptions: for n = 0, 2, 4, 8, 14, 26, 28, 34, 56, 94, 154, and 484, |a(n+1) - a(n)| = 1. We don't know if there are more of these blips.

Examples

			a(4) = 7 because P(4,0) = 2, P(4,1) = 5, P(4,2) = 7, P(4,3) = 11, P(4,4) = 13, P(4,5) = 17, P(4,6) = 19, and for k >= 7, P(4,k) = 23.
		

Crossrefs

Programs

  • Mathematica
    SequenceA[n_] := Module[{pn0 = 2, pnk, an = 0},
       While[True, pnk = NextPrime[pn0 + n + 1, -1];
        If[pn0 == pnk, Break[], pn0 = pnk; an++]];
       Return[an];];

A352495 Decimal expansion of the pearl of the Riemann zeta function.

Original entry on oeis.org

1, 0, 0, 0, 0, 2, 7, 8, 5, 7, 6, 3, 3, 0, 6, 6, 4, 4, 0, 7, 3, 0, 2, 1, 5, 0, 9, 1, 8, 5, 7, 3, 6, 2, 1, 7, 7, 8, 2, 9, 7, 1, 0, 0, 9, 1, 4, 0, 5, 3, 3, 3, 0, 4, 7, 8, 7, 9, 7, 3, 1, 9, 2, 8, 4, 5, 8, 6, 4, 7, 3, 5, 4, 1, 6, 6, 6, 1, 2, 9, 3, 5, 2, 6, 5, 0, 0
Offset: 1

Author

Eduard Roure Perdices, Mar 18 2022

Keywords

Comments

Let Z be the Riemann zeta function, and consider its sequence of nontrivial zeros with nonnegative imaginary part, {r(m)}, so that for every m >= 1, Z(r(m)) = 0, 0 <= Re(r(m)) <= 1, and 0 <= Im(r(m)), and for every k > m, Im(r(m)) < Im(r(k)), or Im(r(m)) = Im(r(k)) and Re(r(m)) < Re(r(k)).
Let i be the imaginary unit, and define the sequence {b(m)} as follows: b(1) = Z((r(1)-1/2)/i), b(2) = Z((r(1)-1/2)/i + Z((r(2)-1/2)/i)), b(3) = Z((r(1)-1/2)/i + Z((r(2)-1/2)/i + Z((r(3)-1/2)/i))), and so on. If this sequence converges, we call its limit the pearl of Z.
Suppose that the Riemann Hypothesis is true. Then the sequence {b(m)} is real. On the interval [2,oo), Z is decreasing, positive, and bounded above by 2, so {b(2*m-1)} is decreasing and bounded below by 0, and hence, it converges to a real value, say A. Moreover, {b(2*m)} is increasing and b(2*m) <= b(2*m+1), and by repeated application of the mean value theorem, b(2*m+1) - b(2*m) <= Z(Im(r(2*m+1))) * |Z'(Im(r(1)))|^(2*m) <= 2*(4/100000)^(2*m), so {b(2*m)} also converges to A, and {a(n)} is the decimal expansion of this value.
We don't know if the existence of a real pearl of Z implies the Riemann Hypothesis.
More generally, the definition of pearl works for Dirichlet L-functions, giving rise to analogous constants, not necessarily real.

Examples

			1.00002785763306644073021509185736217782971009140533304787973192845864...
		

Programs

  • Mathematica
    RealDigits[Re[res = Fold[Zeta[#1 + #2] &, 0, Reverse[(ZetaZero[Range[10]] - 1/2)/I]]], 10, 100][[1]]

A334598 a(n) is the largest nonnegative integer m such that m >= pi(m)^(1 + 1/n).

Original entry on oeis.org

4, 28, 1860, 149052, 12771496, 1221908916, 132662942122, 16354869261256, 2272946910544740, 353076161059625536, 60799066209732571716, 11518836088596729968092
Offset: 1

Author

Eduard Roure Perdices, May 07 2020

Keywords

Comments

For a nonnegative integer m, pi(m) = A000720(m). It is well-known that if
m >= 17, then m/log(m) < pi(m). [Rosser and Schoenfeld]
Fix a real exponent d > 0. If m is big enough, then m < (m/log(m))^(1 + d). In particular, choosing d = 1/n, with n >= 1, we deduce that a(n) exists.
Note that different choices of the exponent d will produce analogous sequences.
The estimates of pi(m) in [Dusart, Thm. 5.1] and [Axler, Thm. 2] allow us to obtain upper and lower bounds for a(n). In particular, we can conclude that in base 10:
a(13) has 25 digits, starting with 238;
a(14) has 27 digits, starting with 536;
a(15) has 30 digits, starting with 1304;
a(16) has 32 digits, starting with 3409.
The tool primecount [Walisch], used to compute pi(10^28) in A006880, can handle pi(m) for m <= 10^31, and since (a(n)) is monotonically increasing, it seems that the computation of a(n) for n >= 16 will be challenging.
It is easy to see that for every n >= 1, a(n) is even and a(n)+1 is prime. - Eduard Roure Perdices, Nov 07 2021

Crossrefs

Extensions

a(8) from Giovanni Resta, May 07 2020
a(9)-a(10) from Daniel Suteu, May 20 2020
a(11)-a(12) from Eduard Roure Perdices, Nov 07 2021

A334599 a(n) is the largest nonnegative integer m such that m - pi(m) >= pi(m)^(1 + 1/n).

Original entry on oeis.org

2, 2, 346, 66942, 7087878, 744600720, 85281842598, 10892966758462, 1553240096780862, 246080334487930558, 43047454015229292840, 8262178422446205100776
Offset: 1

Author

Eduard Roure Perdices, May 07 2020

Keywords

Comments

For a nonnegative integer m, pi(m) = A000720(m). It is well-known that if
m >= 17, then m/log(m) < pi(m). [Rosser and Schoenfeld]
Fix a real exponent d > 0. If m is big enough, then m < (m/log(m)) + (m/log(m))^(1 + d). In particular, choosing d = 1/n, with n >= 1, we deduce that a(n) exists.
Note that different choices of the exponent d will produce analogous sequences.
The estimates of pi(m) in [Dusart, Thm. 5.1] and [Axler, Thm. 2] allow us to obtain upper and lower bounds for a(n). In particular, we can conclude that in base 10:
a(13) has 25 digits, starting with 1729;
a(14) has 27 digits, starting with 392;
a(15) has 29 digits, starting with 962;
a(16) has 32 digits, starting with 2534.
The tool primecount [Walisch], used to compute pi(10^28) in A006880, can handle pi(m) for m <= 10^31, and since (a(n)) is monotonically increasing, it seems that the computation of a(n) for n >= 16 will be challenging.
It is easy to see that for every n >= 1, a(n) is even and a(n)+1 is prime. - Eduard Roure Perdices, Nov 07 2021

Crossrefs

Extensions

a(8) from Giovanni Resta, May 07 2020
a(9)-a(10) from Daniel Suteu, May 20 2020
a(11)-a(12) from Eduard Roure Perdices, Nov 07 2021