cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A190802 Gauss' approximation for the number of primes below 10^n.

Original entry on oeis.org

5, 29, 177, 1245, 9629, 78627, 664917, 5762208, 50849234, 455055614, 4118066400, 37607950280, 346065645809, 3204942065691, 29844571475287, 279238344248556, 2623557165610821, 24739954309690414, 234057667376222381, 2220819602783663483
Offset: 1

Views

Author

Nathaniel Johnston, May 25 2011

Keywords

Comments

The offset logarithmic integral or Eulerian logarithmic integral Li(10^n)-Li(2), i.e., integral(2..x, dt/log(t)), appears in Gauss’s formula for counting prime numbers < 10^n and is sometimes referred to as the "European" definition. - Vladimir Pletser, Mar 17 2013

References

  • Jonathan Borwein, David H. Bailey, "Mathematics by Experiment", A. K. Peters, 2004, p. 65 (Table 2.2).

Crossrefs

Programs

  • Maple
    seq(round(evalf(integrate(1/log(t),t=2..10^n))), n=1..21);
  • Mathematica
    Table[Round[Integrate[1/Log[t],{t,2,10^n}]],{n,20}] (* James C. McMahon, Feb 06 2024 *)

Formula

a(n) = round(integral(dt/log(t),t=2..10^n)).

A223167 Difference between nearest integer to (Li(10^n)-Li(3)) and pi(10^n), where Li(10^n)-Li(3) = integral(3.. 10^n, dt/log(t)) (A223166) and pi(10^n) = number of primes <= 10^n (A006880).

Original entry on oeis.org

0, 3, 7, 15, 36, 127, 337, 752, 1699, 3101, 11585, 38261, 108969, 314888, 1052616, 3214630, 7956587, 21949553, 99877773, 222744641, 597394252, 1932355206, 7250186214, 17146907276, 55160980937, 155891678119, 508666658004, 1427745660372
Offset: 1

Views

Author

Vladimir Pletser, Mar 16 2013

Keywords

Comments

As Li(3)= 2.163588..., A057752(n)-a(n) = 2, except for n =3, 6, 10, 11, 15, 20 where A057752(n)-a(n)= 3.
This sequence yields an even better average relative difference than Gauss's approximation (A106313), i.e., Average(a(n)/pi(10^n)) = 7.4969...*10^-3 for 1<=n<=24, compared to Average(A057752(n)/pi(10^n)) = 3.2486...*10^-2 and Average(A106313(n)/pi(10^n)) = 2.0116...*10^-2, showing that, when using the logarithmic integral, Li(10^n)-Li(3) (A223166) gives a better approximation to pi(10^n) than Li(10^n)-Li(2) (A190802) and than Li(10^n) (A057754).

Crossrefs

Programs

  • Mathematica
    a[n_] := Round[LogIntegral[10^n] - LogIntegral[3]] - PrimePi[10^n]; Table[a[n], {n, 1, 14}]
  • PARI
    a(n)=round(eint1(-log(3))-eint1(-n*log(10)))-primepi(10^n) \\ Charles R Greathouse IV, May 03 2013

Formula

a(n) = A223166(n) - A006880(n).

Extensions

Terms a(25)-a(28) obtained using A006880. - Eduard Roure Perdices, Apr 14 2021

A225138 Difference between pi(10^n) and nearest integer to (4*((S(n))^(n-1))) where pi(10^n) = number of primes <= 10^n (A006880) and S(n) = Sum_{i=0..2} (C(i)*(log(log(A*(B+n^(8/3)))))^(2i)) (A225137).

Original entry on oeis.org

0, 0, 0, 1, 0, -31, -35, 193, 0, -13318, -153006, -828603, 957634, 86210559, 1293461717, 13497122460, 107995231864, 586760026575, -1942949, -54073500144915, -897247302459084, -9393904607181950, -54876701507521387, 379565456321952448
Offset: 1

Views

Author

Vladimir Pletser, Apr 29 2013

Keywords

Comments

A225137 provides exactly the values of pi(10^n) for n = 1, 2, 3, 5 and 9 and yields an average relative difference in absolute value, i.e., average(abs(A225138(n))/pi(10^n)) = 7.2165...*10^-5 for 1 <= n <= 24.
A225137 provides a better approximation to the distribution of pi(10^n) than: (1) the Riemann function R(10^n), whether as the sequence of integers <= R(10^n) (A215663), which yields 1.453...*10^-4, or as the sequence of integers nearest to R(10^n) (A057794), which yields 0.01219...; (2) the functions of the logarithmic integral Li(x) = Integral_{t=0..x} dt/log(t), whether as the sequence of integers nearest to (Li(10^n) - Li(3)) (A223166), which yields 7.4969...x10^-3 (see A223167), or as Gauss's approximation to pi(10^n), i.e., the sequence of integers nearest to (Li(10^n) - Li(2)) (A190802) = 0.020116... (see A106313), or as the sequence of integers nearest to Li(10^n) (A057752), which yields 0.032486....

References

  • Jonathan Borwein, David H. Bailey, Mathematics by Experiment, A. K. Peters, 2004, p. 65 (Table 2.2).
  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.

Crossrefs

Formula

a(n) = A006880(n) - A225137(n).

A227694 Difference between pi(10^n) and nearest integer to (F[2n+1](S(n)))^2 where pi(10^n) = number of primes <= 10^n (A006880), F[2n+1](x) are Fibonacci polynomials of odd indices [2n+1] and S(n) = Sum_{i=0..2} (C(i)*(log(log(A*(B+n^2))))^(2i)) (see A227693).

Original entry on oeis.org

0, 0, 0, 0, -3, -29, 171, 2325, 13809, 33409, -443988, -8663889, -99916944, -927360109, -7318034084, -47993181878, -223530657736, 810207694, 16558446000251, 257071298610935, 2657469557986545, 18804132783879606, 24113768300809752, -2232929440358147845, -54971510676262602742
Offset: 1

Views

Author

Vladimir Pletser, Jul 19 2013

Keywords

Comments

A227693 provides exactly the values of pi(10^n) for n = 1 to 4 and yields an average relative difference in absolute value, average(abs(A227694(n))/pi(10^n)) = 1.58269...*10^-4 for 1 <= n <= 25.
A227693 provides a better approximation to the distribution of pi(10^n) than: (1) the Riemann function R(10^n) as the sequence of integers nearest to R(10^n) (A057794), which yields 0.01219...; (2) the functions of the logarithmic integral Li(x) = Integral_{t=0..x} dt/log(t), whether as the sequence of integers nearest to (Li(10^n) - Li(3)) (A223166), which yields 0.0074969... (see A223167), or as Gauss's approximation to pi(10^n), i.e., the sequence of integers nearest to (Li(10^n) - Li(2)) (A190802), which yields 0.020116... (see A106313), or as the sequence of integer nearest to Li(10^n) (A057752), which yields 0.032486....

References

  • Jonathan Borwein, David H. Bailey, Mathematics by Experiment, A. K. Peters, 2004, p. 65 (Table 2.2).
  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.

Crossrefs

Formula

a(n) = A006880(n) - A227693(n).

A229256 Difference between PrimePi(10^n) and its approximation by A229255(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 10, 223, 144, -9998, -58280, 348134, 9517942, 92182430, 404027415, -2717447318, -79612186200, -983858494247, -7964818545554, -31776540093807, 289145607666924, 8243854930562789, 108476952917770938, 885519807642948390, 715407405727600672, -147909423143942345447
Offset: 1

Views

Author

Vladimir Pletser, Sep 17 2013

Keywords

Comments

A229255 provides exact values of pi(10^n) for n=1 to 5 and yields an average relative difference in absolute value of Average(Abs(A229256(n))/pi(10^n)) = 2.05820...*10^-4 for 1<=n<=25.
A229255 provides a better approximation to the distribution of pi(10^n) than: (1) the Riemann function R(10^n) as the sequence of integers nearest to R(10^n), Average(Abs(A057794 (n))/pi(10^n)) =1.219...*10^-2; (2) the functions of the logarithmic integral Li(x) whether as the sequence of integer nearest to (Li(10^n)-Li(3)) (A223166) (Average(Abs(A223167(n))/pi(10^n))= 7.4969...*10^-3), or as Gauss’ approximation to pi(10^n), i.e. the sequence of integer nearest to (Li(10^n)-Li(2)) (A190802) (Average(Abs(A106313(n))/pi(10^n)) =2.0116...*10^-2), or as the sequence of integer nearest to Li(10^n) (A057752) (Average(Abs(A057752 (n))/pi(10^n)) =3.2486...*10^-2).

References

  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.

Crossrefs

Formula

a(n) = A006880(n) - A229255(n).
Showing 1-5 of 5 results.