A190802
Gauss' approximation for the number of primes below 10^n.
Original entry on oeis.org
5, 29, 177, 1245, 9629, 78627, 664917, 5762208, 50849234, 455055614, 4118066400, 37607950280, 346065645809, 3204942065691, 29844571475287, 279238344248556, 2623557165610821, 24739954309690414, 234057667376222381, 2220819602783663483
Offset: 1
- Jonathan Borwein, David H. Bailey, "Mathematics by Experiment", A. K. Peters, 2004, p. 65 (Table 2.2).
-
seq(round(evalf(integrate(1/log(t),t=2..10^n))), n=1..21);
-
Table[Round[Integrate[1/Log[t],{t,2,10^n}]],{n,20}] (* James C. McMahon, Feb 06 2024 *)
A223167
Difference between nearest integer to (Li(10^n)-Li(3)) and pi(10^n), where Li(10^n)-Li(3) = integral(3.. 10^n, dt/log(t)) (A223166) and pi(10^n) = number of primes <= 10^n (A006880).
Original entry on oeis.org
0, 3, 7, 15, 36, 127, 337, 752, 1699, 3101, 11585, 38261, 108969, 314888, 1052616, 3214630, 7956587, 21949553, 99877773, 222744641, 597394252, 1932355206, 7250186214, 17146907276, 55160980937, 155891678119, 508666658004, 1427745660372
Offset: 1
-
a[n_] := Round[LogIntegral[10^n] - LogIntegral[3]] - PrimePi[10^n]; Table[a[n], {n, 1, 14}]
-
a(n)=round(eint1(-log(3))-eint1(-n*log(10)))-primepi(10^n) \\ Charles R Greathouse IV, May 03 2013
A225138
Difference between pi(10^n) and nearest integer to (4*((S(n))^(n-1))) where pi(10^n) = number of primes <= 10^n (A006880) and S(n) = Sum_{i=0..2} (C(i)*(log(log(A*(B+n^(8/3)))))^(2i)) (A225137).
Original entry on oeis.org
0, 0, 0, 1, 0, -31, -35, 193, 0, -13318, -153006, -828603, 957634, 86210559, 1293461717, 13497122460, 107995231864, 586760026575, -1942949, -54073500144915, -897247302459084, -9393904607181950, -54876701507521387, 379565456321952448
Offset: 1
- Jonathan Borwein, David H. Bailey, Mathematics by Experiment, A. K. Peters, 2004, p. 65 (Table 2.2).
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.
A227694
Difference between pi(10^n) and nearest integer to (F[2n+1](S(n)))^2 where pi(10^n) = number of primes <= 10^n (A006880), F[2n+1](x) are Fibonacci polynomials of odd indices [2n+1] and S(n) = Sum_{i=0..2} (C(i)*(log(log(A*(B+n^2))))^(2i)) (see A227693).
Original entry on oeis.org
0, 0, 0, 0, -3, -29, 171, 2325, 13809, 33409, -443988, -8663889, -99916944, -927360109, -7318034084, -47993181878, -223530657736, 810207694, 16558446000251, 257071298610935, 2657469557986545, 18804132783879606, 24113768300809752, -2232929440358147845, -54971510676262602742
Offset: 1
- Jonathan Borwein, David H. Bailey, Mathematics by Experiment, A. K. Peters, 2004, p. 65 (Table 2.2).
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.
A229256
Difference between PrimePi(10^n) and its approximation by A229255(n).
Original entry on oeis.org
0, 0, 0, 0, 0, 10, 223, 144, -9998, -58280, 348134, 9517942, 92182430, 404027415, -2717447318, -79612186200, -983858494247, -7964818545554, -31776540093807, 289145607666924, 8243854930562789, 108476952917770938, 885519807642948390, 715407405727600672, -147909423143942345447
Offset: 1
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.
Cf.
A006880,
A229255,
A225137,
A215663,
A057793,
A057794,
A223166,
A223167,
A190802,
A106313,
A057752,
A227693,
A052435.
Showing 1-5 of 5 results.
Comments