A190804 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 2x-1 and 3x are in a.
1, 3, 5, 9, 15, 17, 27, 29, 33, 45, 51, 53, 57, 65, 81, 87, 89, 99, 101, 105, 113, 129, 135, 153, 159, 161, 171, 173, 177, 195, 197, 201, 209, 225, 243, 257, 261, 267, 269, 297, 303, 305, 315, 317, 321, 339, 341, 345, 353, 387, 389, 393, 401, 405, 417, 449
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A190803.
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) a190804 n = a190804_list !! (n-1) a190804_list = 1 : f (singleton 3) where f s = m : (f $ insert (2*m-1) $ insert (3*m) s') where (m, s') = deleteFindMin s -- Reinhard Zumkeller, Jun 01 2011
-
Mathematica
h = 2; i = -1; j = 3; k = 0; f = 1; g = 10 ; a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A190804 *) b = (a + 1)/2; c = a/3; r = Range[1, 500]; d = Intersection[b, r] (* A190803 conjectured *) e = Intersection[c, r] (* A190844 *)
Extensions
a(56) = 449 inserted by Reinhard Zumkeller, Jun 01 2011
Comments