A190805 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 2x-1 and 3x+1 are in a.
1, 4, 7, 13, 22, 25, 40, 43, 49, 67, 76, 79, 85, 97, 121, 130, 133, 148, 151, 157, 169, 193, 202, 229, 238, 241, 256, 259, 265, 292, 295, 301, 313, 337, 364, 385, 391, 400, 403, 445, 454, 457, 472, 475, 481, 508, 511, 517, 529, 580, 583, 589, 601, 607, 625, 673, 688, 715, 724, 727
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) a190805 n = a190805_list !! (n-1) a190805_list = 1 : f (singleton 4) where f s = m : (f $ insert (2*m-1) $ insert (3*m+1) s') where (m, s') = deleteFindMin s -- Reinhard Zumkeller, Jun 01 2011
-
Mathematica
h = 2; i = -1; j = 3; k = 1; f = 1; g = 10 ; a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A190805 *) b = (a + 1)/2; c = (a - 1)/3; r = Range[1, 500]; d = Intersection[b, r] (* A190845 *) e = Intersection[c, r] (* A190808 conjectured *)
Extensions
a(56)=673 inserted by Reinhard Zumkeller, Jun 01 2011
Comments