A190812 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 2x+1 and 3x+2 are in a.
1, 3, 5, 7, 11, 15, 17, 23, 31, 35, 47, 53, 63, 71, 95, 107, 127, 143, 161, 191, 215, 255, 287, 323, 383, 431, 485, 511, 575, 647, 767, 863, 971, 1023, 1151, 1295, 1457, 1535, 1727, 1943, 2047, 2303, 2591, 2915, 3071, 3455, 3887, 4095, 4373, 4607, 5183, 5831, 6143, 6911, 7775, 8191, 8747, 9215, 10367, 11663
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) a190812 n = a190812_list !! (n-1) a190812_list = f $ singleton 1 where f s = m : (f $ insert (2*m+1) $ insert (3*m+2) s') where (m, s') = deleteFindMin s -- Reinhard Zumkeller, Jun 01 2011
-
Mathematica
h = 2; i = 1; j = 3; k = 2; f = 1; g = 20 ; a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A190812 *) b = (a - 1)/2; c = (a - 2)/3; r = Range[1, 30000]; d = Intersection[b, r] (* A069353 *) e = Intersection[c, r] (* A190812 conjectured *)
Extensions
a(41)=2047 inserted by Reinhard Zumkeller, Jun 01 2011
Comments