cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190822 G.f. satisfies: A(x) = Product_{n>=1} (1 + x^n) * (1 + x^(2n)*A(x)).

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 27, 53, 104, 208, 415, 836, 1690, 3434, 7004, 14342, 29460, 60707, 125443, 259883, 539689, 1123226, 2342493, 4894590, 10245321, 21481047, 45108768, 94863801, 199772929, 421245065, 889331420, 1879723964, 3977402460, 8424718846
Offset: 0

Views

Author

Paul D. Hanna, May 21 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 7*x^4 + 14*x^5 + 27*x^6 + ...
G.f.: A(x) = (1+x)*(1+x^2*A(x)) * (1+x^2)*(1+x^4*A(x)) * (1+x^3)*(1+x^6*A(x)) * ...
G.f.: A(x) = 1 + x*(1+x*A(x))/(1-x) + x^3*(1+x*A(x))*(1+x^2*A(x))/((1-x)*(1-x^2)) + x^6*(1+x*A(x))*(1+x^2*A(x))*(1+x^3*A(x))/((1-x)*(1-x^2)*(1-x^3)) + ...
		

Crossrefs

Cf. A145267.

Programs

  • Mathematica
    nmax = 40; A[] = 0; Do[A[x] = Product[(1 + x^k)*(1 + x^(2*k)*A[x]), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Mar 03 2024 *)
    (* Calculation of constants {d,c}: *) Chop[{1/r, Sqrt[(-r*s*(1 + s) * Log[r^2]^2 * (s*(1 + s)*Derivative[0, 1][QPochhammer][-1, r] + r*QPochhammer[-1, r]^2 * Derivative[0, 1][QPochhammer][-s, r^2]))/(2*Pi * QPochhammer[-1, r]* (s*Log[r^2]^2 + (1 + s)^2 * QPolyGamma[1, Log[-s]/Log[r^2], r^2]))]} /. FindRoot[{2*s*(1 + s) == QPochhammer[-1, r]*QPochhammer[-s, r^2], 1 + s/(1 + s) + (Log[1 - r^2] + QPolyGamma[0, Log[-s]/Log[r^2], r^2])/Log[r^2] == 0}, {r, 1/2}, {s, 8}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Mar 03 2024 *)
  • PARI
    {a(n) = my(A=1+x);for(i=1,n, A = prod(m=1,n, (1 + x^m) * (1 + x^(2*m)*A+x*O(x^n))));polcoeff(A,n)}
    
  • PARI
    {a(n) = my(A=1+x);for(i=1,n, A = 1 + sum(m=1,sqrtint(2*n),x^(m*(m+1)/2) * prod(k=1,m, (1 + A*x^k)/(1 - x^k +x*O(x^n))))); polcoeff(A,n)}

Formula

G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^(n*(n+1)/2) * Product_{k=1..n} (1 + x^k*A(x)) / (1 - x^k) due to a Lebesgue identity.
From Vaclav Kotesovec, Mar 03 2024: (Start)
Let A(x) = y, then 2*y*(1 + y) = QPochhammer(-1, x) * QPochhammer(-y, x^2).
a(n) ~ c * d^n / n^(3/2), where d = 2.20229791253644493239805950840417681972879718454582447550768622636671... and c = 9.92694112477002167508700773789825154871250555780774205172995613775...
Radius of convergence:
r = 1/d = 0.45407117461609608946909851977877786178200148047136427660297778018...
A(r) = s = 8.6584215712749049134273598177515922912152713325328273868580739614...
(End)
The values r and A(r) given above also satisfy A(r) = 1 / Sum_{n>=1} r^(2*n)/(1 + r^(2*n)*A(r)). - Paul D. Hanna, Mar 03 2024