A190846 (Squarefree part of (ABC))/C for A=1, C=A+B, as a function of B, rounded to the nearest integer.
1, 2, 2, 2, 5, 6, 2, 1, 3, 10, 6, 6, 13, 14, 2, 2, 6, 6, 10, 10, 21, 22, 6, 1, 5, 3, 2, 14, 29, 30, 2, 2, 33, 34, 6, 6, 37, 38, 10, 10, 41, 42, 22, 7, 15, 46, 6, 1, 1, 10, 26, 26, 6, 6, 14, 14, 57, 58, 30, 30, 61, 21, 1, 2, 65, 66, 34, 34, 69, 70, 6, 6, 73, 15, 8, 38, 77, 78, 10, 0, 3, 82, 42
Offset: 1
Examples
For B=14, we have C=15, so SQP(ABC)=SQP(210)=2*3*5*7=210, so SQP(ABC)/C=210/15=14. For B=19, we have C=20, so SQP(ABC)=SQP(380)=2*5*19=190, so SQP(ABC)/C=190/20=9.5, which rounds to 10.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Abderrahmane Nitaj, The ABC conjecture homepage
- Eric Weisstein's World of Mathematics, abc Conjecture
- Wikipedia, ABC conjecture
Programs
-
Magma
SQP:=func< n | &*[ f[j, 1]: j in [1..#f] ] where f is Factorization(n) >; A190846:=func< n | Round(SQP(a*n*c)/c) where c is a+n where a is 1 >; [ A190846(n): n in [1..85] ]; // Klaus Brockhaus, May 27 2011
-
Maple
A190846 := proc(n) c := 1+n ; round(A007947(n*c)/c) ; end proc: seq(A190846(n),n=1..80) ; # R. J. Mathar, Jun 10 2011
-
Mathematica
Array[Round[SelectFirst[Reverse@ Divisors[#1 #2], SquareFreeQ]/#2] & @@ {#, # + 1} &, 83] (* Michael De Vlieger, Feb 19 2019 *)
-
PARI
rad(n)=my(f=factor(n)[,1]); prod(i=1,#f,f[i]) a(n)=rad(n^2+n)\/(n+1) \\ Charles R Greathouse IV, Mar 11 2014
-
Python
from operator import mul from sympy import primefactors def rad(n): return 1 if n<2 else reduce(mul, primefactors(n)) def a(n): return int(round(rad(n**2 + n)/(n + 1))) # Indranil Ghosh, May 24 2017
Comments