A190912 Partial sums of pentanacci numbers (A000322).
1, 2, 3, 4, 5, 10, 19, 36, 69, 134, 263, 516, 1013, 1990, 3911, 7688, 15113, 29710, 58407, 114824, 225737, 443786, 872459, 1715208, 3372009, 6629194, 13032651, 25621516, 50370573, 99025938, 194679867, 382730540, 752428429, 1479235342, 2908100111, 5717174284
Offset: 1
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..3402
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,0,0,-1).
Crossrefs
Cf. A000322.
Programs
-
Mathematica
Accumulate[LinearRecurrence[{1,1,1,1,1},{1,1,1,1,1},50]] (* or *) LinearRecurrence[{2,0,0,0,0,-1},{1,2,3,4,5,10},50] (* Harvey P. Dale, May 23 2011 *)
Formula
a(1)=1, a(2)=2, a(3)=3, a(4)=4, a(5)=5, a(6)=10, a(n) = 2*a(n-1)-a(n-6). - Harvey P. Dale, May 23 2011
G.f.: x*( 1-x^2-2*x^3-3*x^4 ) / ( (x-1)*(x^5+x^4+x^3+x^2+x-1) ). - R. J. Mathar, May 26 2011