cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A296741 Expansion of e.g.f. arcsin(x*sec(x)) (odd powers only).

Original entry on oeis.org

1, 4, 64, 2752, 237312, 34390016, 7512117248, 2302977392640, 942529341030400, 496287845973753856, 326775812392982937600, 263039306566659448242176, 254121613033387345942937600, 290175686081926976733941071872, 386599796043915196967089006968832
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 19 2017

Keywords

Examples

			arcsin(x*sec(x)) = x/1! + 4*x^3/3! + 64*x^5/5! + 2752*x^7/7! + 237312*x^9/9! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[ArcSin[x Sec[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
  • PARI
    first(n) = x='x+O('x^(2*n)); vecextract(Vec(serlaplace(asin(x/cos(x)))), (4^n - 1)/3) \\ Iain Fox, Dec 19 2017

Formula

a(n) = (2*n+1)! * [x^(2*n+1)] arcsin(x*sec(x)).

A296742 Expansion of e.g.f. arcsinh(x*sec(x)) (odd powers only).

Original entry on oeis.org

1, 2, 4, -8, 2448, 130976, -2342848, -239130240, 99052990720, 8918588764672, -2795242017684480, -92786315822417920, 279479081010906828800, -57316070780459900928, -39411396653183724314673152, 5932051008707372732672475136, 10689040617354387626585873252352
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 19 2017

Keywords

Examples

			arcsinh(x*sec(x)) = x/1! + 2*x^3/3! + 4*x^5/5! - 8*x^7/7! + 2448*x^9/9! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 17; Table[(CoefficientList[Series[ArcSinh[x Sec[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
  • PARI
    first(n) = x='x+O('x^(2*n)); vecextract(Vec(serlaplace(asinh(x/cos(x)))), (4^n - 1)/3) \\ Iain Fox, Dec 19 2017

Formula

a(n) = (2*n+1)! * [x^(2*n+1)] arcsinh(x*sec(x)).

A296743 Expansion of e.g.f. arctanh(x*sec(x)) (odd powers only).

Original entry on oeis.org

1, 5, 109, 5977, 612729, 100954061, 24395453861, 8128143367905, 3571195811862385, 2000535014776893973, 1391684597704875555165, 1177047158822263838854889, 1189444022487013498606939625, 1415364934488337503351305867997, 1958850511524588636608881908473749
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 19 2017

Keywords

Examples

			arctanh(x*sec(x)) = x/1! + 5*x^3/3! + 109*x^5/5! + 5977*x^7/7! + 612729*x^9/9! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[ArcTanh[x Sec[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
  • PARI
    first(n) = x='x+O('x^(2*n)); vecextract(Vec(serlaplace(atanh(x/cos(x)))), (4^n - 1)/3) \\ Iain Fox, Dec 19 2017

Formula

a(n) = (2*n+1)! * [x^(2*n+1)] arctanh(x*sec(x)).

A302542 Expansion of e.g.f. arctan(x)/cos(x) (odd powers only).

Original entry on oeis.org

1, 1, 29, -139, 31737, -1824151, 313750293, -51584719523, 13137192234225, -3947317975733039, 1522475446731094285, -702509124781480897211, 389722900767594460770025, -253710144786166583863030983, 192285396891961478711402819077, -167564604997707653568802119363795
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2018

Keywords

Examples

			arctan(x)/cos(x) = x/1! + x^3/3! + 29*x^5/5! - 139*x^7/7! + 31737*x^9/9! - 1824151*x^11/11! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[ArcTan[x]/Cos[x], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]

Formula

a(n) = (2*n+1)! * [x^(2*n+1)] arctan(x)/cos(x).
Showing 1-4 of 4 results.