cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A296920 Rational primes that decompose in the quadratic field Q(sqrt(-11)).

Original entry on oeis.org

3, 5, 23, 31, 37, 47, 53, 59, 67, 71, 89, 97, 103, 113, 137, 157, 163, 179, 181, 191, 199, 223, 229, 251, 257, 269, 311, 313, 317, 331, 353, 367, 379, 383, 389, 397, 401, 419, 421, 433, 443, 449, 463, 467, 487, 499, 509, 521, 577, 587, 599, 617, 619, 631, 641, 643, 647, 653, 661, 683, 691, 709, 719
Offset: 1

Views

Author

N. J. A. Sloane, Dec 25 2017

Keywords

Comments

Primes that are 1, 3, 5, 9, or 15 mod 22. - Charles R Greathouse IV, Mar 18 2018
(Which means: union of A141849, A141850, A141852, A141856 and A141851. - R. J. Mathar, Apr 15 2024)

References

  • Helmut Hasse, Number Theory, Grundlehren 229, Springer, 1980, page 498.

Crossrefs

Programs

  • Maple
    # In the quadratic field Q(sqrt(D)), for squarefree D<0, compute lists of:
    # rational primes that decompose (SD),
    # rational primes that are inert (SI),
    # primes p such that D is a square mod p (QR), and
    # primes p such that D is a nonsquare mod p (NR),
    # omitting the latter if it is the same as the inert primes.
    # Consider first M primes p.
    # Reference: Helmut Hasse, Number Theory, Grundlehren 229, Springer, 1980, page 498.
    with(numtheory):
    HH := proc(D,M)
        local SD,SI,QR,NR,p,q,i,t1;
        # if D >= 0 then error("D must be negative"); fi;
        if not issqrfree(D) then
            error("D must be squarefree");
        end if;
        q:=-D;
        SD:=[]; SI:=[]; QR:=[]; NR:=[];
        if (D mod 8) = 1 then
            SD:=[op(SD),2];
        end if;
        if (D mod 8) = 5 then
            SI:=[op(SI),2];
        end if;
        for i from 2 to M do
            p:=ithprime(i);
            if (D mod p) <> 0 and legendre(D,p)=1 then
                SD:=[op(SD),p];
            end if;
            if (D mod p) <> 0 and legendre(D,p)=-1 then
                SI:=[op(SI),p];
            end if;
        end do;
        for i from 1 to M do
            p:=ithprime(i);
            if legendre(D,p) >= 0 then
                QR:=[op(QR),p];
            else
            NR:=[op(NR),p];
            end if;
        end do:
        lprint("Primes that decompose:", SD);
        lprint("Inert primes:", SI);
        lprint("Primes p such that Legendre(D,p) = 0 or 1: ", QR);
        if SI <> NR then
            lprint("Note: SI <> NR here!");
            lprint("Primes p such that Legendre(D,p) = -1: ", NR);
        end if;
    end proc:
    HH(-11,200); # produces the present sequence (A296920), A191060, and A056874.
  • Mathematica
    Reap[For[p = 2, p < 1000, p = NextPrime[p], If[KroneckerSymbol[-11, p] == 1, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Apr 29 2019 *)
  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim, if(kronecker(-11,p)==1, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Mar 18 2018

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, Mar 18 2018

A341785 Norms of prime elements in Z[(1+sqrt(-11))/2], the ring of integers of Q(sqrt(-11)).

Original entry on oeis.org

3, 4, 5, 11, 23, 31, 37, 47, 49, 53, 59, 67, 71, 89, 97, 103, 113, 137, 157, 163, 169, 179, 181, 191, 199, 223, 229, 251, 257, 269, 289, 311, 313, 317, 331, 353, 361, 367, 379, 383, 389, 397, 401, 419, 421, 433, 443, 449, 463, 467, 487, 499, 509, 521
Offset: 1

Views

Author

Jianing Song, Feb 19 2021

Keywords

Comments

Also norms of prime ideals in Z[(1+sqrt(-11))/2], which is a unique factorization domain. The norm of a nonzero ideal I in a ring R is defined as the size of the quotient ring R/I.
Consists of the primes congruent to 0, 1, 3, 4, 5, 9 modulo 11 and the squares of primes congruent to 2, 6, 7, 8, 10 modulo 5.
For primes p == 1, 3, 4, 5, 9 (mod 11), there are two distinct ideals with norm p in Z[(1+sqrt(-11))/2], namely (x + y*(1+sqrt(-11))/2) and (x + y*(1-sqrt(-11))/2), where (x,y) is a solution to x^2 + x*y + 3*y^2 = p; for p = 11, (sqrt(-11)) is the unique ideal with norm p; for p == 2, 6, 7, 8, 10 (mod 11), (p) is the only ideal with norm p^2.

Examples

			norm((1 + sqrt(-11))/2) = norm((1 - sqrt(-11))/2) = 3;
norm((3 + sqrt(-11))/2) = norm((3 - sqrt(-11))/2) = 5;
norm((9 + sqrt(-11))/2) = norm((9 - sqrt(-11))/2) = 23;
norm((5 + 3*sqrt(-11))/2) = norm((5 - 3*sqrt(-11))/2) = 31.
		

Crossrefs

The number of nonassociative elements with norm n (also the number of distinct ideals with norm n) is given by A035179.
The total number of elements with norm n is given by A028609.
Norms of prime ideals in O_K, where K is the quadratic field with discriminant D and O_K be the ring of integers of K: A055673 (D=8), A341783 (D=5), A055664 (D=-3), A055025 (D=-4), A090348 (D=-7), A341784 (D=-8), this sequence (D=-11), A341786 (D=-15*), A341787 (D=-19), A091727 (D=-20*), A341788 (D=-43), A341789 (D=-67), A341790 (D=-163). Here a "*" indicates the cases where O_K is not a unique factorization domain.

Programs

  • PARI
    isA341785(n) = my(disc=-11); (isprime(n) && kronecker(disc,n)>=0) || (issquare(n, &n) && isprime(n) && kronecker(disc,n)==-1)

A369863 Inert rational primes in the field Q(sqrt(-21)).

Original entry on oeis.org

13, 29, 43, 47, 53, 59, 61, 67, 73, 79, 83, 97, 113, 127, 131, 137, 149, 151, 157, 163, 167, 181, 197, 211, 227, 229, 233, 241, 251, 281, 311, 313, 317, 331, 349, 379, 383, 389, 397, 401, 409, 419, 433, 449, 463, 467, 479, 487, 499, 503, 547, 557, 563, 569, 571, 577, 587
Offset: 1

Views

Author

Dimitris Cardaris, Feb 03 2024

Keywords

Comments

Primes p such that Legendre(-21,p) = -1.

Crossrefs

Cf. inert rational primes in the imaginary quadratic field Q(sqrt(-d)) for the first squarefree positive integers d: A002145 (1), A003628 (2), A003627 (3), A003626 (5), A191059 (6), A003625 (7), A296925 (10), A191060 (11), A105885 (13), A191061 (14), A191062 (15), A296930 (17), A191063 (19), this sequence (21), A191064 (22), A191065 (23).

Programs

  • Mathematica
    Select[Range[3,600], PrimeQ[#] && JacobiSymbol[-21,#]==-1 &] (* Stefano Spezia, Feb 04 2024 *)
  • SageMath
    [p for p in prime_range(3, 600) if legendre_symbol(-21, p) == -1]
Showing 1-3 of 3 results.