A191100 [Squarefree part of (ABC)]/C for A=3, C=A+B, as a function of B, rounded to nearest integer.
2, 6, 1, 6, 4, 1, 21, 6, 1, 30, 33, 2, 5, 42, 2, 6, 26, 2, 57, 30, 2, 13, 69, 0, 8, 78, 1, 42, 5, 10, 93, 6, 2, 102, 105, 2, 28, 114, 13, 30, 62, 5, 129, 66, 1, 20, 28, 2, 11, 30, 2, 78, 40, 2, 165, 42, 10, 174, 177, 3, 6, 186, 7, 6, 98, 22, 201, 102, 2, 210, 213, 0, 110, 222, 5, 114
Offset: 1
A190846 (Squarefree part of (ABC))/C for A=1, C=A+B, as a function of B, rounded to the nearest integer.
1, 2, 2, 2, 5, 6, 2, 1, 3, 10, 6, 6, 13, 14, 2, 2, 6, 6, 10, 10, 21, 22, 6, 1, 5, 3, 2, 14, 29, 30, 2, 2, 33, 34, 6, 6, 37, 38, 10, 10, 41, 42, 22, 7, 15, 46, 6, 1, 1, 10, 26, 26, 6, 6, 14, 14, 57, 58, 30, 30, 61, 21, 1, 2, 65, 66, 34, 34, 69, 70, 6, 6, 73, 15, 8, 38, 77, 78, 10, 0, 3, 82, 42
Offset: 1
Comments
Given A, B natural numbers, and C=A+B, the ABC conjecture deals with the ratio of the squarefree part of the product A*B*C, divided by C. Here, B plays the role of the OEIS index n.
Examples
For B=14, we have C=15, so SQP(ABC)=SQP(210)=2*3*5*7=210, so SQP(ABC)/C=210/15=14. For B=19, we have C=20, so SQP(ABC)=SQP(380)=2*5*19=190, so SQP(ABC)/C=190/20=9.5, which rounds to 10.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Abderrahmane Nitaj, The ABC conjecture homepage
- Eric Weisstein's World of Mathematics, abc Conjecture
- Wikipedia, ABC conjecture
Programs
-
Magma
SQP:=func< n | &*[ f[j, 1]: j in [1..#f] ] where f is Factorization(n) >; A190846:=func< n | Round(SQP(a*n*c)/c) where c is a+n where a is 1 >; [ A190846(n): n in [1..85] ]; // Klaus Brockhaus, May 27 2011
-
Maple
A190846 := proc(n) c := 1+n ; round(A007947(n*c)/c) ; end proc: seq(A190846(n),n=1..80) ; # R. J. Mathar, Jun 10 2011
-
Mathematica
Array[Round[SelectFirst[Reverse@ Divisors[#1 #2], SquareFreeQ]/#2] & @@ {#, # + 1} &, 83] (* Michael De Vlieger, Feb 19 2019 *)
-
PARI
rad(n)=my(f=factor(n)[,1]); prod(i=1,#f,f[i]) a(n)=rad(n^2+n)\/(n+1) \\ Charles R Greathouse IV, Mar 11 2014
-
Python
from operator import mul from sympy import primefactors def rad(n): return 1 if n<2 else reduce(mul, primefactors(n)) def a(n): return int(round(rad(n**2 + n)/(n + 1))) # Indranil Ghosh, May 24 2017
Comments
Examples
Links
Crossrefs
Programs
Magma
PARI
Python