A191121 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x-1 and 4x-1 are in a.
1, 2, 3, 5, 7, 8, 11, 14, 19, 20, 23, 27, 31, 32, 41, 43, 55, 56, 59, 68, 75, 79, 80, 91, 92, 95, 107, 122, 123, 127, 128, 163, 164, 167, 171, 176, 203, 219, 223, 224, 235, 236, 239, 271, 272, 275, 284, 299, 315, 319, 320, 363, 365, 367, 368, 379, 380, 383, 427, 487, 488, 491, 500, 507, 511, 512, 527, 608, 651, 655, 656, 667, 668
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) a191121 n = a191121_list !! (n-1) a191121_list = f $ singleton 1 where f s = m : (f $ insert (3*m-1) $ insert (4*m-1) s') where (m, s') = deleteFindMin s -- Reinhard Zumkeller, Jun 01 2011
-
Mathematica
h = 3; i = -1; j = 4; k = -1; f = 1; g = 9; a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191121 *) b = (a + 1)/3; c = (a + 1)/4; r = Range[1, 1500]; d = Intersection[b, r] (* A191166 *) e = Intersection[c, r] (* A191167 *)
Comments