A191131 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x and 4x+3 are in a.
1, 3, 7, 9, 15, 21, 27, 31, 39, 45, 63, 81, 87, 93, 111, 117, 127, 135, 159, 183, 189, 243, 255, 261, 279, 327, 333, 351, 375, 381, 405, 447, 471, 477, 511, 543, 549, 567, 639, 729, 735, 759, 765, 783, 837, 975, 981, 999, 1023, 1047, 1053, 1119, 1125, 1143, 1215, 1311, 1335, 1341, 1407, 1413, 1431, 1503, 1527, 1533, 1623
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) a191131 n = a191131_list !! (n-1) a191131_list = f $ singleton 1 where f s = m : (f $ insert (3*m) $ insert (4*m+3) s') where (m, s') = deleteFindMin s -- Reinhard Zumkeller, Jun 01 2011
-
Mathematica
h = 3; i = 0; j = 4; k = 3; f = 1; g = 9; a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191131 *) b = a/3; c = (a - 3)/4; r = Range[1, 1500]; d = Intersection[b, r] (* A191186 *) e = Intersection[c, r] (* A191187 *)
Comments