A191145 Increasing sequence S generated by these rules: a(1)=1, and if x is in S then both 3x+2 and 4x+3 are in S.
1, 5, 7, 17, 23, 31, 53, 71, 95, 127, 161, 215, 287, 383, 485, 511, 647, 863, 1151, 1457, 1535, 1943, 2047, 2591, 3455, 4373, 4607, 5831, 6143, 7775, 8191, 10367, 13121, 13823, 17495, 18431, 23327, 24575, 31103, 32767, 39365, 41471, 52487, 55295, 69983, 73727, 93311, 98303, 118097, 124415, 131071, 157463, 165887
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
See A191113.
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) a191145 n = a191145_list !! (n-1) a191145_list = f $ singleton 1 where f s = m : (f $ insert (3*m+2) $ insert (4*m+3) s') where (m, s') = deleteFindMin s -- Reinhard Zumkeller, Jun 01 2011
-
Mathematica
h = 3; i = 2; j = 4; k = 3; f = 1; g = 11; a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191145 *) b = (a - 2)/3; c = (a - 3)/4; r = Range[1, 16000]; d = Intersection[b, r] (* A191145 *) e = Intersection[c, r] (* A191145 *) m = (a + 1)/2 (* A025613 *)
Comments