A191203 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 2x and 1+x^2 are in a.
1, 2, 4, 5, 8, 10, 16, 17, 20, 26, 32, 34, 40, 52, 64, 65, 68, 80, 101, 104, 128, 130, 136, 160, 202, 208, 256, 257, 260, 272, 290, 320, 401, 404, 416, 512, 514, 520, 544, 580, 640, 677, 802, 808, 832, 1024, 1025, 1028, 1040, 1088, 1157, 1160, 1280, 1354, 1601, 1604, 1616, 1664, 2048, 2050, 2056, 2080, 2176, 2314, 2320, 2560
Offset: 1
Keywords
Examples
1 -> 2 -> 4,5 -> 8,10,17,26 ->
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) a191203 n = a191203_list !! (n-1) a191203_list = f $ singleton 1 where f s = m : f (insert (2 * m) $ insert (m ^ 2 + 1) s') where (m, s') = deleteFindMin s -- Reinhard Zumkeller, Apr 18 2014
-
Mathematica
g = 12; Union[Flatten[NestList[{2 #, 1 + #^2} &, 1, g]]] (* A191203; use g>11 to get all terms up to 4096 *)
Comments