A191219 Positive integers k such that n=k*(2*k-1) satisfies: sigma(n) congruent to 2 modulo 4.
5, 9, 13, 41, 49, 61, 113, 121, 169, 181, 225, 289, 313, 421, 441, 613, 625, 761, 925, 1013, 1201, 1301, 1521, 1681, 1741, 1849, 1861, 2025, 2113, 2381, 2401, 2521, 3121, 3481, 3613, 3969, 4325, 4513, 4761, 4901
Offset: 1
Keywords
Examples
For n=4, a(4) = 41 since n = 41*(82 -1) = 3321 and sigma(3321)= 5082 = 4*1270 +2.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..700
Programs
-
Maple
with(numtheory): genz := proc(b)local z,n,s,d; for z from 1 to b by 2 do n := z*(2*z-1); s := sigma(n); if modp(n,4)=2 then print(z); fi; od; end;
-
Mathematica
Select[Range[1,5001,2],Mod[DivisorSigma[1,#(2#-1)],4]==2&] (* Harvey P. Dale, Sep 30 2018 *)
Comments