cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191225 Number of Ramanujan primes R_k between triangular numbers T(n-1) < R_k <= T(n).

Original entry on oeis.org

0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 2, 0, 2, 1, 1, 2, 1, 2, 0, 2, 3, 2, 1, 2, 2, 2, 1, 4, 2, 2, 1, 0, 4, 3, 5, 1, 3, 2, 1, 5, 1, 2, 3, 4, 4, 4, 2, 2, 2, 4, 2, 3, 4, 3, 5, 4, 3, 2, 5, 4, 2, 5, 1, 6, 1, 5, 5, 7, 2, 2, 1, 10, 6, 6, 2, 2, 5, 0, 3, 7, 5, 4, 6, 7, 4
Offset: 1

Views

Author

John W. Nicholson, May 27 2011

Keywords

Comments

The function eta(x), A191228, returns the greatest value of k of R_k <= x, and where R_k is the k-th Ramanujan prime (A104272).

Examples

			Write the numbers 1, 2, ... in a triangle with n terms in the n-th row; a(n) = number of Ramanujan primes in n-th row.
Triangle begins
1                 (0 Ramanujan primes, eta(1) = 0)
2  3              (1 Ramanujan primes, eta(3) - eta(1) = 1)
4  5  6           (0 Ramanujan primes, eta(6) - eta(3) = 0)
7  8  9  10       (0 Ramanujan primes, eta(10) - eta(6) = 0)
11 12 13 14 15    (1 Ramanujan primes, eta(15) - eta(10) = 1)
16 17 18 19 20 21 (1 Ramanujan primes, eta(21) - eta(15) = 1)
		

Crossrefs

Programs

  • Mathematica
    terms = 100; nn = terms^2; R = Table[0, {nn}]; s = 0;
    Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s < nn, R[[s+1]] = k], {k, Prime[3 nn]}];
    A104272 = R + 1;
    eta = Table[Boole[MemberQ[A104272, k]], {k, 1, nn}] // Accumulate;
    T[n_] := n(n+1)/2;
    a[1] = 0; a[n_] := eta[[T[n]]] - eta[[T[n-1]]];
    Array[a, terms] (* Jean-François Alcover, Nov 07 2018, using T. D. Noe's code for A104272 *)
  • Perl
    use ntheory ":all"; sub a191225 { my $n = shift; ramanujan_prime_count( (($n-1)*$n)/2+1, ($n*($n+1))/2 ); } say a191225($) for 1..10; # _Dana Jacobsen, Dec 30 2015

Formula

a(n) = eta(T(n))- eta(T(n-1)).