A191235 Primes p such that the binary representation of p is the concatenation of the binary representations of prime 2 and an odd prime.
11, 23, 43, 83, 181, 353, 359, 383, 643, 661, 691, 709, 739, 751, 1301, 1307, 1361, 1373, 1433, 1481, 1487, 1511, 1523, 2617, 2647, 2689, 2707, 2731, 2749, 2767, 2791, 2857, 2887, 3001, 3019, 3061, 3067, 5147, 5189, 5297, 5309, 5333, 5387, 5393
Offset: 1
Examples
11 is in the sequence because 11, 2, 3 in binary are resp. 1011, 10, 11. 83 is in the sequence because 83, 2, 19 in binary are resp. 1010011, 10, 10011.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[ p: p in PrimesInInterval(3, 6100) | exists(q){ k: k in PrimesUpTo(p div 3) | Intseq(p, 2) eq Intseq(k, 2) cat [0, 1] } ]; // Klaus Brockhaus, May 29 2011
-
PARI
A053644(n)=my(k=1);while(k<=n,k<<=1);k>>1; forprime(p=2,1e3,if(isprime(k=4*A053644(p)+p),print1(k", "))) \\ Charles R Greathouse IV, May 27 2011
Extensions
a(4) corrected, a(15)-a(56) added by Charles R Greathouse IV, May 27 2011
Comments