A191238 Triangle T(n,k) = coefficient of x^n in expansion of (x+x^3+x^5)^k.
1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 3, 0, 1, 0, 3, 0, 4, 0, 1, 0, 0, 6, 0, 5, 0, 1, 0, 2, 0, 10, 0, 6, 0, 1, 0, 0, 7, 0, 15, 0, 7, 0, 1, 0, 1, 0, 16, 0, 21, 0, 8, 0, 1, 0, 0, 6, 0, 30, 0, 28, 0, 9, 0, 1, 0, 0, 0, 19, 0, 50, 0, 36, 0, 10, 0, 1, 0, 0, 3, 0, 45, 0, 77, 0, 45, 0, 11, 0, 1, 0, 0, 0, 16, 0, 90, 0, 112, 0, 55, 0, 12, 0, 1
Offset: 1
Examples
Triangle begins: 1, 0,1, 1,0,1, 0,2,0,1, 1,0,3,0,1, 0,3,0,4,0,1, 0,0,6,0,5,0,1, 0,2,0,10,0,6,0,1, 0,0,7,0,15,0,7,0,1, 0,1,0,16,0,21,0,8,0,1
Links
- Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.
- Vladimir Kruchinin, Derivation of Bell Polynomials of the Second Kind, arXiv:1104.5065 [math.CO], 2011.
- Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
Crossrefs
Cf. A060961 (row sums).
Programs
-
Maple
A191238 := proc(n,k) add(binomial(j,((n-k-2*j)/2))*binomial(k,j)*((-1)^(n-k)+1),j=0..k)/2 ; end proc: seq(seq(A191238(n,m),m=1..n),n=1..10) ;# R. J. Mathar, Dec 16 2015
-
Maxima
T(n,k):=sum(binomial(j,((n-k-2*j)/2))*binomial(k,j)*((-1)^(n-k)+1),j,0,k)/2;
Formula
T(n,k) = Sum_{j=0..k} binomial(j,((n-k-2*j)/2))*binomial(k,j)*((-1)^(n-k)+1)/2.
Comments