cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191238 Triangle T(n,k) = coefficient of x^n in expansion of (x+x^3+x^5)^k.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 3, 0, 1, 0, 3, 0, 4, 0, 1, 0, 0, 6, 0, 5, 0, 1, 0, 2, 0, 10, 0, 6, 0, 1, 0, 0, 7, 0, 15, 0, 7, 0, 1, 0, 1, 0, 16, 0, 21, 0, 8, 0, 1, 0, 0, 6, 0, 30, 0, 28, 0, 9, 0, 1, 0, 0, 0, 19, 0, 50, 0, 36, 0, 10, 0, 1, 0, 0, 3, 0, 45, 0, 77, 0, 45, 0, 11, 0, 1, 0, 0, 0, 16, 0, 90, 0, 112, 0, 55, 0, 12, 0, 1
Offset: 1

Views

Author

Vladimir Kruchinin, May 27 2011

Keywords

Comments

1. Riordan Array (1,x+x^3+x^5) without first column.
2. Riordan Array (1+x^2+x^4,x+x^3+x^5) numbering triangle (0,0).
3. For the g.f. 1/(1-x-x^3-x^5) we have a(n)=sum(k=1..n, T(n,k)) (see A060961).
4. For the e.g.f. exp(1-x-x^3-x^5) we have a(n)=n!*sum(k=1..n, T(n,k)/k!) (see A191237).
5. Bell Polynomial of second kind B(n,k){1,0,6,0,120,0,0,...,0}=n!/k!*T(n,k).
For more formulas see preprints.

Examples

			Triangle begins:
  1,
  0,1,
  1,0,1,
  0,2,0,1,
  1,0,3,0,1,
  0,3,0,4,0,1,
  0,0,6,0,5,0,1,
  0,2,0,10,0,6,0,1,
  0,0,7,0,15,0,7,0,1,
  0,1,0,16,0,21,0,8,0,1
		

Crossrefs

Cf. A060961 (row sums).

Programs

  • Maple
    A191238 := proc(n,k)
        add(binomial(j,((n-k-2*j)/2))*binomial(k,j)*((-1)^(n-k)+1),j=0..k)/2 ;
    end proc:
    seq(seq(A191238(n,m),m=1..n),n=1..10) ;# R. J. Mathar, Dec 16 2015
  • Maxima
    T(n,k):=sum(binomial(j,((n-k-2*j)/2))*binomial(k,j)*((-1)^(n-k)+1),j,0,k)/2;

Formula

T(n,k) = Sum_{j=0..k} binomial(j,((n-k-2*j)/2))*binomial(k,j)*((-1)^(n-k)+1)/2.