A191255 Fixed point of the morphism 0 -> 01, 1 -> 02, 2 -> 03, 3 -> 01.
0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
t = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {0, 2}, 2 -> {0, 3}, 3 -> {0, 1}}] &, {0}, 9] (* this sequence *) Flatten[Position[t, 0]] (* A005408, the odds *) a = Flatten[Position[t, 1]] (* A067368 *) b = Flatten[Position[t, 2]] (* A213258 *) a/2 (* A191257 *) b/4 (* a/2 *)
-
PARI
A191255(n) = if(n%2, 0, my(e=valuation(n, 2)%3); if(!e, 3, e)); \\ Antti Karttunen, May 28 2024, after Jianing Song's Sep 21 2018 formula
Formula
a(n) = 0 for odd n, otherwise a(n) is the unique number in {1,2,3} that is congruent to v2(n) modulo 3, where v2(n) = A007814(n) is the 2-adic valuation of n. - Jianing Song, Sep 21 2018 [Clarified by Jianing Song, May 30 2024]
Recurrence: a(2n-1) = 0, a(2n) = 1, 2, 3, 1 for a(n) = 0, 1, 2, 3 respectively. - Jianing Song, May 30 2024
Comments